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Improved Processing of Microarray Data Using
Image Reconstruction Techniques

Paul O’Neill, George D. Magoulas, Member, IEEE, and Xiaohui Liu*

Abstract—Spotted cDNA microarray data analysis suffers from
various problems such as noise from a variety of sources, missing
data, inconsistency, and, of course, the presence of outliers. This
paper introduces a new method that dramatically reduces the noise
when processing the original image data. The proposed approach
recreates the microarray slide image, as it would have been with
all the genes removed. By subtracting this background recreation
from the original, the gene ratios can be calculated with more preci-
sion and less influence from outliers and other artifacts that would
normally make the analysis of this data more difficult. The new
technique is also beneficial, as it does not rely on the accurate fit-
ting of a region to each gene, with its only requirement being an ap-
proximate coordinate. In experiments conducted, the new method
was tested against one of the mainstream methods of processing
spotted microarray images. Our method is shown to produce much
less variation in gene measurements. This evidence is supported by
clustering results that show a marked improvement in accuracy.

Index Terms—Data quality, image, microarray, preprocessing,
reconstruction.

I. INTRODUCTION

M ICROARRAY technology is progressing at an amazing
rate; the number of genes that can be processed is ever

increasing, along with a multitude of techniques that can be ap-
plied to analyze the various stages of data [16], [17]. No matter
how carefully a microarray experiment is conducted, it is al-
ways certain that there will be sources of external errors within
the slide. These errors can come in many forms, such as tech-
nical errors like the random variation in the scanning laser in-
tensity, inaccurate measurement of gene expressions, and a wide
range of artifacts such as hair, dust, or even fingerprints on the
slide. Another main source of errors is more biological in na-
ture, with possible contamination of the cDNA solution and in-
consistent hybridization. If this did not cause enough problems,
the technology is still very expensive, and so this often means
that measurements cannot be repeated or they are at most dupli-
cated. This is not an ideal situation for data analysis; however,
it does emphasize that as much work as possible should go into
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the preprocessing of the data to obtain the best possible results
for further analysis.

Currently, one of the mainstream uses of gene expression data
is that of clustering [7]. Generally, this utilizes methods such as
hierarchical clustering to group or order the genes based on their
similarity or dissimilarity, an example of which can be seen in
the work by Gaschet al. [8]. Based on this, biologists can make
suppositions about the functions of previously unknown genes
or possibly study the interactions between genes, such as the
discovery of gene pathways. However, all these forms of anal-
ysis are very susceptible to noise, highlighting again the need
to make sure that the preprocessing of the data is as reliable as
possible. Although many people have focused on the postpro-
cessing of the microarray data [4], [7], comparatively there has
still been very little work done looking into improved methods
of analyzing the original image data [14], [19].

In this paper, we will propose a novel method for analyzing
the image data that inherently deals with slide variation and a
large degree of slide artifacts, and then contrast this to GenePix
Pro [3], a software package that is often used for analysis. We
contrast them through a series of experiments designed to look
at variation within genes, between repeated genes, and between
clustering results. These tests will be conducted on a large
dataset that contains a high number of repeated genes. The
next section takes a closer look at methods used in processing
microarrays and possible sources of error. Then, in Section III,
we describe the new methods of processing microarray image
data and give examples of its use. Section IV presents the
real-world dataset that was used during this paper, along with
various metrics and algorithms used throughout the testing
process. Following this is a series of experiments designed to
compare the two techniques. Finally, there is a summary of our
findings and a brief look at how this work can be extended.

II. EXISTING TECHNIQUES

Although there are many varied techniques for analyzing mi-
croarray data, they generally have several similarities. They all
require knowledge of a central point for the spot they are going
to analyze and need to know how the slide was laid out origi-
nally. At this point, they then all define some sort of boundary
around the gene; in GenePix [3], this is a circle of varying di-
ameter, while other techniques use the partitioning of the pixels’
values by use of a histogram [4], [9] and growing a region from
the center [1]. For a comparison of these techniques and more
details about their implementation, see Yanget al. [19], who
have compared them all in detail.

1536-1241/03$17.00 © 2003 IEEE
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Fig. 1. GenePix sampling method.

For this paper, we will focus on comparing our method to that
of GenePix, a software package commonly used by biologists.
As shown in Fig. 1, GenePix first fits a circle to the gene itself
using a simple threshold to calculate the diameter; then, the me-
dian value of these pixels is used as the intensity of spot signal
(see area A in Fig. 1). The technique samples the surrounding
noise by placing four rectangular regions (e.g., area B) in the
diagonal space between this and adjacent spots (e.g., area C).
Again, the median value of all the pixels within these regions is
taken as the noise. The final stage is to subtract the noise from
the signal measurement, and once this is done for the red and
green channels of the image, the ratio of the spot can be cal-
culated. This process makes the assumption that there is little
variation both within the gene spot and in the surrounding back-
ground noise and that an exact region can be fitted to the gene.
Unfortunately, this is not always the case, as various types of
artifacts are commonly found. In the next section, we describe
a technique that deals with this problem.

III. N EW TECHNIQUE

In our attempt to develop a resilient technique that will be
able to deal with the types of artifacts that are commonly found
both in and around the gene spots, we decided to look at ways of
recreating the noise that is found behind the spot itself. Rather
than relying on a median sample of the surrounding pixels, we
will recreate by a process of interpolation what we believe the
noise behind the spot to have been. The image reconstruction
technique (IRT) is unlike other methods that focus on the signal
of the gene spots. Instead, we focus on the noise from start to
finish. The result of this process is an image of the noise that can
be subtracted from the original to leave us with the remaining
signal. The genes can then be calculated in a normal fashion by
measuring the intensity of the remaining pixels for each gene.
This method is advantageous, as it inherently deals with slide
variation and a large degree of slide artifacts. Due to its nature,
it does not necessitate the exact fitting of a boundary around
the spot, which is very important if this technique is to be auto-
mated.

A. Description

The algorithm we propose requires that we can successfully
reconstruct the noise in the part of the image where the gene re-
sides. The technique used is a simplified version of the method
proposed by Efroset al. [5], a well-established technique for
image tiling and hole filling. For example, if there is a hair on
an image that we wish to remove, these techniques can take a
mask of the artifact and then recreate the image as it would have

been. Applying this to microarray images, we mask out all the
genes so that we can recreate the noise. The original version of
the method proposed in [5] is suitable for processing individual
genes; however, in order to process the thousands of genes in-
volved in a typical experiment, it proved to be too time con-
suming.

To this end, we tested several variations inspired by [5] and
came up with the following process that should be applied to
every gene in each channel of the slide. The main difference be-
tween this and the method proposed in [5] is that we do not use
the Markov random field model in selecting pixels. Instead, for
any given pixel that we need to fill, we compute and score candi-
date pixels based on a simple distance score of the surrounding
pixels within a given window.

Let us first define the set of all pixels within a generic image
window of size , i.e., , where the relative
coordinates, , of a pixel take values in the range

, and the window is centered at with coordinates
and , where . Next, we define a set of pixels

in a window centered on the gene,, with a width of Sample-
Size denoted by. is the set of pixels centered on the
gene spot coordinates with a window width of . From this,
we create a subset of , , where all pixels fall
within the spot boundary and need to be reconstructed. Next,
we define another subset of ; , where no
pixel within the window with width MatchWindow, ,
centered around belong to this gene or any adjacent genes.
Therefore and . If we now de-
fine as the intensity of pixel , the reconstruction process
can be described as follows; for each pixelin , we find the
best matching pixel from the set of sample pixels, . Then
we set the intensity of the pixelto that of , . In
order to find the best match for pixel, we compare it to all the
pixels in the background set . Therefore pixel will be the
pixel with the minimum match score , defined by

(1)

(2)

(3)

where creates a set of pixel
coordinates based on , the relative coordinates

and of pixel relative to pixel ( and
); is the intensity of the pixel with relative

coordinates in respect to pixel ; is the total number of
pixels being compared. This is in essence the average Manhattan
distance of the surrounding pixels within the window.

B. Example

We now use the example shown in Fig. 2 to explain the
process previously outlined. The method first of all creates two
lists, one with a set of surrounding background pixels (Back-
ground Noise) within a square (Sample Window) centered on
the gene spot with dimensions SampleSize, and the other a set
of pixels in the spot that need to be reconstructed. Then, the
list of pixels to be filled is sorted in order, based on how many
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Fig. 2. IRT sampling method.

(a) (b)

Fig. 3. An example MatchWindow. (a) Pixel to be filled (A). (b) Pixel being
tested (C).

surrounding pixels exist around each pixel within a square of
dimensions MatchSize (e.g., Sample Windows A or B). The
pixel with the most neighbors is selected (e.g., pixel in
window A). This is then scored against all of the pixels within
the background area. Scoring is based on how closely the
surrounding pixels present within a square (Match Window),
defined by MatchSize, match one another.

For example, when matching pixel , the window of pixels
around it would be compared to the corresponding background
pixels (for example, those in windows C, D, E, and so on). This
is illustrated in Fig. 3, where Fig. 3(a) shows the pixel which is
being reconstructed and Fig. 3(b) shows the background pixel.
The gray area shows pixels that have not yet been reconstructed;
the pixels denoted by the “” symbol are those that will be used
in the comparison. In our techniques, this comparison consists
of calculating the average Manhattan distance of all these pixels
( and are the relative pixel coordinates from the pixel in ques-
tion).

During initial testing of this method, we conducted numerous
reconstructions on blank areas of the slides. These are areas that
do not contain gene spots but do, however, contain various ar-
tifacts. Fig. 4 shows an example reconstruction; Fig. 4(a) is the
original image with two easily distinguishable artifacts that in-
tersect a circular region that we plan to restore. Without knowl-
edge of this circular region, Fig. 4(b) shows the reconstruc-
tion, although not perfect it matches the original very closely.
Fig. 4(c) gives an indication as to how this image was recon-
structed. In the center you can see the reconstructed area. The
gray circular region around this is a buffer zone placed around
the reconstructed area; no pixels within this region are used in
the reconstruction. Outside this buffer zone, black pixels repre-
sent pixels that were used to reconstruct the image. Here we can
see that a lot of pixels from the hair-like artifact have been used
within the reconstructed artifact within the central region.

Various measures such as the Euclidean or the Manhattan dis-
tance can be used for the comparisons. Following some prelimi-

(a) (b) (c)

Fig. 4. An example reconstruction applied to a blank area of a slide with
artifacts. (a) The original area. (b) The reconstructed area. (c) The sample
locations used in the reconstruction.

(a) (b) (c)

Fig. 5. An example reconstruction: (a) the original image minus (b) the
reconstructed background image leaves (c) the final gene image.

nary testing, we have found that the average Manhattan distance
between all noise pixel intensities gave the best performance
(where , are the relative coordinates of the pixels within each
window centered around pixel). For example, this was cal-
culated between all noise pixel intensities in a window
of width MatchSize and the corresponding pixel intensities of
a background window of similar width, such as the pixels
of window . This calculation was repeated for all background
pixels, and then the intensity value of the pixel with minimum
average distance was used to reconstruct the intensity of.
This procedure was then repeated for all pixels within the gene
spot.

To get a glimpse at how this would work on full slide, Fig. 5
shows two blocks of genes. In total, there are 768 gene spots in
two blocks. The image on the left [Fig. 5(a)] shows the original
slide. In the middle [Fig. 5(b)] is an example reconstruction of
this slide surface, and on the right [Fig. 5(c)] is the difference
between the two; as you can see, only the gene spots remain
with the noise removed.

IV. SUPPORTINGMATERIAL

A. Dataset

The slides used in this paper came from two experiments that
were conducted using the human gen1 clone set slides [10]. The
experiments were designed to contrast the effects of two cancer
inhibiting drugs (PolyIC and LPS) on two different cell lines,
one normal (Control) and one cancerous (HeLa), over a series
of time points. Altogether, this gives us a total of 48 microarray
slides for which we have the uncompressed image data and the
initial GenePix results. Each slide in this dataset consists of 12
gene blocks that have 32 columns and 12 rows. The first row
of each odd-numbered block is the Lucidea scorecard [15] con-
sisting of a set of 32 predefined genes that can be used to test the
accuracy of the experimental process. The remaining 11 rows of
each block are the human genes.
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Fig. 6. Overview of slide layout.

This is depicted in Fig. 6, with each of the 12 gene blocks
labeled “ .” As you can see from this diagram, each of the
blocks on the left have biological repeats on the right. This is
important, as it means that on each slide there are a large number
of repeats, 24 repeats of each of the 32 scorecard genes and du-
plicates of each of the remaining 4224 (3211 12) human
genes. Another useful characteristic of this slide layout is the
large area that is left between each of the gene blocks, an ex-
ample of which is annotated “.” This is a useful area for testing
background reconstruction techniques such as those used by
GenePix and the method we propose.

The scanned images of the spotted microarray slides are
stored in the standard TIFF format. Some scanning software
will store the red and the green channels separately, while
others, such as the GenePix software, store the two channels
and preview images in a single composite file. In either case,
there are essentially two TIFF images that we are interested in.
These both have exactly the same properties and represent the
two channels of the scanned image, Cy5 (red) and Cy3 (green).
Each image is stored as a uncompressed 16-b gray-level
bitmap, with each pixel taking a value between 0 and 65 535.
It is generally accepted that any pixels at the extremes of this
scale (i.e., 0 or 65 535) should be ignored, as these are beyond
the range of the scanner to accurately measure.

Along with the scanned images, another useful resource is the
GenePix result files that store the initial analysis from the soft-
ware provided with the scanner. These files store a list of all of
the genes along with detailed information about each spot. This
information is in the form of spot coordinates, spot diameter, its
ratio, and various statistical measures such as the standard devi-
ation of the pixels within the spot. Although GenePix can work
in an automated mode when locating all the spots, it also allows
for manual intervention. In the case of the GenePix results we
compare our method to, all spots on every slide have been visu-
ally inspected and manually corrected if necessary. This gives
us a high degree of confidence that the GenePix results are a
good representation of the program’s best capabilities.

B. Weighted Kappa

A useful metric for scoring clustering results is something
that can often be found in medical statistics, weighted kappa
(WK). WK is used to rate the agreement between the classifica-

tion decisions made by two observers [2]. In this case, observer
1 is the cluster output from the algorithm being tested, and ob-
server 2 is the known arrangement in which the genes should
be clustered. The formulas for calculating this metric are as fol-
lows:

(4)

Row Col (5)

Count (6)

(7)

Count Row

Col (8)

where is the WK agreement; and are the
observed weighted proportional agreement and the expected
weighted proportional agreement, respectively; Rowand
Col are row and column totals respectively; the sum of all
of the cells is denoted by , and Count is the count for a
particular combination of classifications; andis the number of
classes (i.e., we have two classes: the algorithms either agree or
disagree; thus, ). This metric will score the output clusters
against the expected clusters and give us a value between1
and 1; the higher the value, the better the arrangement, with 1
being total agreement. Based on this metric, we can now score
how well the results produced via the image reconstruction and
GenePix compares to the original arrangement of genes.

C. Clustering Methods

1) Hierarchical Clustering: This method of clustering
yields a dendrogram (binary tree) representing the nested
clusters of patterns and similarity levels at which clusters
change [18]. The dendrograms can be broken at different levels
to yield different clusterings of the data. There are different
variants of this algorithm, but most are agglomerative, and
involve merging then adding nodes (which can be either single
variables or clusters) to form larger clusters based on some
minimum distance criteria. The algorithm for hierarchical
clustering is described as follows.

I nput :
D: A distance matrix between n objects

Out put :
H(0) H(n) A Dendrogram Representing
the Sequence of Merges

Al gor i t hm:
Let H(0) = {{1}, {2}, , {n}}, i.e., the
n Objects in Their Own Clusters
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For i = 1 to n
Choose the Two Most Related Clusters in

H(i-1) According to D
Update D

Merge These Two Clusters Creating H(i)
End For

In order to extract a given number of clusters from the den-
drogram, the Cutree technique used in thestatistical package1

can be applied.
2) Partitioning Around Medoids (PAM):Partitioning

around medoids (PAM) [12] works by first selecting out of
total objects that are the closest (according to the distance

matrix) to the remaining ( ) objects. The fitness of these
medoids is calculated by placing the remaining ( ) objects
in a group according to the nearest medoid and summing up
all of the distances of the group members from this medoid.
These selected objects are the initial medoids. A swapping
procedure is then applied until there is no improvement in fit-
ness. Swapping involves generating all of the possible medoid
and nonmedoid pairs, evaluating the fitness of each pair, and
then performing the swap that improves fitness the most. PAM
is described in the following pseudocode:

I nput :
D: A distance matrix
Iterations:
How long to run the algorithm for
n: The number of Objects being clus-
tered
m: The number of clusters required

Out put :
z: m clusters

Al gor i t hm:

Construct m Initial Medoids, that mini-
mize
For i = 1 to Iterations
For all Object Pairs,(i,j), Where i
Medoids and j Medoids
Swap the i,j Pair Which Increases the Fit-
ness the Most
End For
End For
Allocate Each Medoid to a New Cluster
Allocate the Nonmedoids to Their Nearest
Medoid

D. Pearson’s Correlation

In order to use clustering methods such as hierarchical, a
method is needed to compare genes to one another. Pearson’s
correlation coefficient () measures linear relationships between

1http://www.r-project.org

two variables, and , either discrete or continuous and is de-
fined in (9)

(9)

where and is the mean of variables and , respec-
tively, and and are the th observations of variables
and . Note that . This gives us a measure of corre-
lation between the genes with 0 being no correlation,1 exact
inverse correlation, and 1 exact correlation (i.e., identical).

V. EXPERIMENTAL STUDY

In this section, we provide an empirical comparison between
the two methods in the form of four tests all conducted on a
large real-world gene expression dataset. The first two tests take
a look at the performance of the methods based on absolute error
and the standard deviation of biological repeats. The third test
looks at the variation of 202 752 duplicate results, and the fourth
test looks at scoring clustering results in an attempt to assess the
impact of these techniques on later processing of the data.

A. Absolute Error

The method that has been proposed relies on the fact that it
can reconstruct the area behind a spot. Therefore, the first line of
testing was to see if this could be achieved. There is no way that
you can truly know what the background would have been be-
hind the gene spot; therefore, it is impossible to verify the tech-
nique on the gene spot locations. However, if we instead look
at blank areas of the slide, then this is no longer the case, and
we can easily test how well the reconstruction methods work.
This can be achieved by locating an empty portion of the slide,
usually between the 24 blocks of genes; then, by cutting a hole
in the slide and recreating the background, we can then verify
the recreated sample against what we know to have been there
previously. From this, we can calculate the absolute error of the
reconstruction and then compare this to the other processing
techniques such as GenePix.

For this experiment, three slides were picked at random, and
1056 spots of random size were positioned within the blank re-
gions for both the Cy5 and Cy3 channels. After reconstructing
each spot, the difference between the recreated background and
the true background was compared to the difference between the
GenePix noise estimation and the true pixel values. If the image
reconstruction was closer to the true background, then this was
counted as a positive improvement.

On average, 73% of spots were improved, although it would
be more interesting if we can see how those spots, where
GenePix estimated the background better, compared to those
which benefited from using the image reconstruction.

Fig. 7 is a graph that shows just this. The positiveaxis of
the graph shows how much each pixel within all the spots was
improved when using the IRT. This is contrasted to the nega-
tive portion of the axis that shows the improvement that was
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Fig. 7. The gained improvement in pixel values (positive axis) against the loss
in erroneous pixels (negative axis).

(a) (b)

Fig. 8. The standard deviation of 32 genes repeated 24 times across 48
experiments processed using the IRT. (a) GenePix. (b) IRT.

gained when using GenePix for those spots that showed nega-
tive results. It is clear from the graph that image reconstruction
is having a significant effect on how the noise is estimated for
any given spot value. Using the IRT not only improves nearly
three quarters of the spots processed, but also this improvement
is in orders of magnitude higher than the negative effects which
are seen in just over one quarter of the spots processed.

B. Variation in Scorecard Gene

As we stated before, the dataset we are working on contains
a high number of repeats for each slide. First of all, there are 24
repeats of 32 control genes on each slide, followed by duplicates
of 4224 human genes. For this section, we will only be using the
control data, as we have the most repeats for these. This experi-
ment analyzes the standard deviation between the 24 repeats of
the scorecard genes on each of the 48 slides. This is based on the
assumption that if a gene sample is repeated on a slide, then it is
reasonable to expect its ratio to be the same. Therefore, if a given
technique is producing a lower standard deviation between re-
peated measures of the same gene, it must be analyzing that gene
more successfully. Fig. 8 shows the standard deviation of each
of the 32 genes for the 48 experiments. It is clear from this that
the image processing technique we present in Fig. 8(b) has sig-
nificantly reduced the standard deviation. It should be noted that
the IRT also allowed us to measure the ratios of an extra 8% of
the genes (2908 genes); this could be due to the IRT method cor-
recting for these noise in these genes sufficiently enough to be
able to measure their expression, whereas GenePix was unable

Fig. 9. Overview of the standard deviation across the 32 repeated genes.

Fig. 10. Overview of the standard deviation across the 48 experiments.

to remove the noise. To summarize these results, the mean stan-
dard deviation is reduced from 0.91 to 0.53, and the maximum
standard deviation is reduced from 6.23 to 2.43.

Fig. 9 is an average cross section of Fig. 8, plotting the mean
of all 32 repeated genes over the 48 experiments. The white bars
show how GenePix performed against the image reconstruction
in gray. Altogether, 28 of the 32 genes showed a reduction in
standard deviation or no change.

Another interesting way of looking at this data is to average
all the genes across each of the 48 experiments as shown in
Fig. 10. Here again, we can see that the image reconstruction
significantly reduces the standard deviation, with 46 out of
the 48 experiments showing an overall reduction in standard
deviation.

Looking at the previous two summaries of results, it seemed
that certain experiments benefited while others remained un-
changed, but we do not know exactly which slides or genes. To
get an overview of the entire experiment, we produced Fig. 11.

This shows those genes and experiments that were improved
when using the IRT (white), those that were better using
GenePix (black), and those that were unchanged between
techniques (gray). Here we can see that genes 5 to 8 remained
largely unchanged; this is likely to be as these four genes were
very highly expressed. However, to draw any real conclusions
from this, we believe that it is not enough to just look at the
results of one experiment; maybe in the future, after processing
multiple experiments, it will become clear what types of spots
different methods process most accurately. This could lead to
being able to classify spots before processing and then selecting
the best technique, allowing simple techniques to be used on
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Fig. 11. An overview of which genes in which experiment showed
improvement, those that did not and those that remained unchanged (� �0.1
difference).

Fig. 12. Scatter plot of all 202 752 duplicate genelog ratios processed using
GenePix.

relatively clean areas of the slide while using more robust but
time-consuming techniques such as image reconstruction on the
noisy sections or those affected by artifacts.

C. Variation in Human Genes

The previous experiments have focused on the scorecard
genes that are present in all of the slides. This is because these
genes had the largest number of repeats. However, this still
leaves duplicates of the 4224 human genes from the actual
experiment. Taking the ratios of these genes and plotting
them in scatter graph should show a linear relationship. The
closer to the line the points are, the less variation there is.
In Fig. 12 is the plot for all 4224 genes across the 48 slides for
GenePix; Fig. 13 is the same for the IRT. From these graphs, it
is clear that the IRT shows much less variation, especially for
the negative ratios.

D. Clustering

The final method of testing we propose is the validation of
clustering results. Normally, this would be difficult to achieve,
as there is not enough substantial domain knowledge to be
able to calculate a score for clusters. However, in this dataset
we have a large number of repeats for a subset of the genes.
These genes are the 32 control genes that make up the Lucidea
scorecard found in the first row of every block. Using the 48
experimental slides, we now have enough data to enable us to
use standard clustering algorithms to blindly group these genes
together. Then, once we have the resulting clusters, we would

Fig. 13. Scatter plot of all 202 752 duplicate genelog ratios processed using
the IRT.

Fig. 14. WK of resultant clusters using hierarchical clustering.

expect to find all 24 repeats of the same gene clustered together.
As each of the 32 genes in the scorecard are meant to be unique,
we can also expect to find 32 unique clusters. As we now
know how to expect the genes to form clusters, it is possible
to score the results using the WK [2] metric. As explained
before, WK scores agreement between the resultant clusters
and known true clusters, with 0 being a random arrangement
and 1 the perfect result. To verify the results, we chose to use
hierarchical [18] clustering and partitioning around medoids
[12]. For this technique, we used the implementation in the
freeware statistical package R,2 and the results are shown in
Fig. 14. Here, we have only used those genes for which all the
samples were present, and it is clear that there is a remarkable
improvement when using the image reconstruction, with both
algorithms showing nearly a 0.2 increase in their WK scores.
This shows that the clustering results are much more accurate
in terms of both an increase in the correct clustering of genes
and a decrease in the incorrect clustering of genes.

VI. CONCLUSION

This paper proposed a new method of approaching mi-
croarray image analysis. Instead of focusing on the signal as
with other techniques, we looked toward being able to recon-
struct the noise accurately in a way that we could demonstrate
to be more robust. To this end, we presented the results of
several experiments run on real microarray experimental data

2http://www.r-project.com
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to demonstrate the performance of this technique at various
processing stages. The results obtained have shown a great
improvement over a software package that is commonly used in
the field. The technique greatly reduces the variance between
repeats on a given slide; also, in looking at clustering results,
we have shown that not only is the biological information left
intact but it appears to be more accurate. In the future, we would
like to extend our testing to include other mainstream methods
that exist such as Spot [19], ScanAlyze [6], and QuantArray
[9]. We plan to test the technique on other datasets and include
the analysis of other clustering techniques along with verifi-
cation against biological domain knowledge. This technique
has already been shown to be more resilient to spot boundary
fitting, and this may allow for more automated processing of
microarrays in the future. To this end, it will be interesting to
analyze exactly how it compares to other techniques in terms
of robustness and whether it can be used automatically without
loss of accuracy.
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