17 research outputs found

    One Year of Alendronate Treatment Lowers Microstructural Stresses Associated with Trabecular Microdamage Initiation

    Get PDF
    Alendronate, an anti-remodeling agent, is commonly used to treat patients suffering from osteoporosis by increasing bone mineral density. Though fracture risk is lowered, an increase in microdamage accumulation has been documented in patients receiving alendronate, leading to questions about the potentially detrimental effects of remodeling suppression on the local tissue (material) properties. In this study, trabecular bone cores from the distal femur of beagle dogs treated for one year with alendronate, at doses scaled by weight to approximate osteoporotic and Paget's disease treatment doses in humans, were subjected to uniaxial compression to induce microdamage. Tissue level von Mises stresses were computed for alendronate-treated and non-treated controls using finite element analysis and correlated to microdamage morphology. Using a modified version of the Moore and Gibson classification for damage morphology, we determined that the von Mises stress for trabeculae exhibiting severe and linear microcrack patterns was decreased by approximately 25% in samples treated with alendronate compared with non-treated controls (p<0.01), whereas there was no reduction in the von Mises stress state for diffuse microdamage formation. Furthermore, an examination of the architectural and structural characteristics of damaged trabeculae demonstrated that severely damaged trabeculae were thinner, more aligned with the loading axis, and less mineralized than undamaged trabeculae in alendronate-treated samples (p<0.01). Similar relationships with damage morphology were found only with trabecular orientation in vehicle-treated control dogs. These results indicate that changes in bone's architecture and matrix properties associated with one year of alendronate administration reduce trabecular bone's ability to resist the formation of loading-induced severe and linear microcracks, both of which dissipate less energy prior to fracture than does diffuse damage

    Consensus Recommendations for the Use of Automated Insulin Delivery (AID) Technologies in Clinical Practice

    Get PDF
    International audienceThe significant and growing global prevalence of diabetes continues to challenge people with diabetes (PwD), healthcare providers and payers. While maintaining near-normal glucose levels has been shown to prevent or delay the progression of the long-term complications of diabetes, a significant proportion of PwD are not attaining their glycemic goals. During the past six years, we have seen tremendous advances in automated insulin delivery (AID) technologies. Numerous randomized controlled trials and real-world studies have shown that the use of AID systems is safe and effective in helping PwD achieve their long-term glycemic goals while reducing hypoglycemia risk. Thus, AID systems have recently become an integral part of diabetes management. However, recommendations for using AID systems in clinical settings have been lacking. Such guided recommendations are critical for AID success and acceptance. All clinicians working with PwD need to become familiar with the available systems in order to eliminate disparities in diabetes quality of care. This report provides much-needed guidance for clinicians who are interested in utilizing AIDs and presents a comprehensive listing of the evidence payers should consider when determining eligibility criteria for AID insurance coverage

    A Glycemia Risk Index (GRI) of Hypoglycemia and Hyperglycemia for Continuous Glucose Monitoring Validated by Clinician Ratings

    Get PDF
    BackgroundA composite metric for the quality of glycemia from continuous glucose monitor (CGM) tracings could be useful for assisting with basic clinical interpretation of CGM data.MethodsWe assembled a data set of 14-day CGM tracings from 225 insulin-treated adults with diabetes. Using a balanced incomplete block design, 330 clinicians who were highly experienced with CGM analysis and interpretation ranked the CGM tracings from best to worst quality of glycemia. We used principal component analysis and multiple regressions to develop a model to predict the clinician ranking based on seven standard metrics in an Ambulatory Glucose Profile: very low-glucose and low-glucose hypoglycemia; very high-glucose and high-glucose hyperglycemia; time in range; mean glucose; and coefficient of variation.ResultsThe analysis showed that clinician rankings depend on two components, one related to hypoglycemia that gives more weight to very low-glucose than to low-glucose and the other related to hyperglycemia that likewise gives greater weight to very high-glucose than to high-glucose. These two components should be calculated and displayed separately, but they can also be combined into a single Glycemia Risk Index (GRI) that corresponds closely to the clinician rankings of the overall quality of glycemia (r = 0.95). The GRI can be displayed graphically on a GRI Grid with the hypoglycemia component on the horizontal axis and the hyperglycemia component on the vertical axis. Diagonal lines divide the graph into five zones (quintiles) corresponding to the best (0th to 20th percentile) to worst (81st to 100th percentile) overall quality of glycemia. The GRI Grid enables users to track sequential changes within an individual over time and compare groups of individuals.ConclusionThe GRI is a single-number summary of the quality of glycemia. Its hypoglycemia and hyperglycemia components provide actionable scores and a graphical display (the GRI Grid) that can be used by clinicians and researchers to determine the glycemic effects of prescribed and investigational treatments

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M&gt;70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0&lt;e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    Outcome Measures for Artificial Pancreas Clinical Trials: A Consensus Report.

    No full text
    Research on and commercial development of the artificial pancreas (AP) continue to progress rapidly, and the AP promises to become a part of clinical care. In this report, members of the JDRF Artificial Pancreas Project Consortium in collaboration with the wider AP community 1) advocate for the use of continuous glucose monitoring glucose metrics as outcome measures in AP trials, in addition to HbA1c, and 2) identify a short set of basic, easily interpreted outcome measures to be reported in AP studies whenever feasible. Consensus on a broader range of measures remains challenging; therefore, reporting of additional metrics is encouraged as appropriate for individual AP studies or study groups. Greater consistency in reporting of basic outcome measures may facilitate the interpretation of study results by investigators, regulatory bodies, health care providers, payers, and patients themselves, thereby accelerating the widespread adoption of AP technology to improve the lives of people with type 1 diabetes

    Genome-wide bidirectional CRISPR screens identify mucins as host factors modulating SARS-CoV-2 infection.

    No full text
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a range of symptoms in infected individuals, from mild respiratory illness to acute respiratory distress syndrome. A systematic understanding of host factors influencing viral infection is critical to elucidate SARS-CoV-2-host interactions and the progression of Coronavirus disease 2019 (COVID-19). Here, we conducted genome-wide CRISPR knockout and activation screens in human lung epithelial cells with endogenous expression of the SARS-CoV-2 entry factors ACE2 and TMPRSS2. We uncovered proviral and antiviral factors across highly interconnected host pathways, including clathrin transport, inflammatory signaling, cell-cycle regulation, and transcriptional and epigenetic regulation. We further identified mucins, a family of high molecular weight glycoproteins, as a prominent viral restriction network that inhibits SARS-CoV-2 infection in vitro and in murine models. These mucins also inhibit infection of diverse respiratory viruses. This functional landscape of SARS-CoV-2 host factors provides a physiologically relevant starting point for new host-directed therapeutics and highlights airway mucins as a host defense mechanism
    corecore