42 research outputs found

    Capacity Value of Wind Power

    Get PDF
    Power systems are planned such that they have adequate generation capacity to meet the load, according to a defined reliability target. The increase in the penetration of wind generation in recent years has led to a number of challenges for the planning and operation of power systems. A key metric for generation system adequacy is the capacity value of generation. The capacity value of a generator is the contribution that a given generator makes to generation system adequacy. The variable and stochastic nature of wind sets it apart from conventional energy sources. As a result, the modeling of wind generation in the same manner as conventional generation for capacity value calculations is inappropriate. In this paper a preferred method for calculation of the capacity value of wind is described and a discussion of the pertinent issues surrounding it is given. Approximate methods for the calculation are also described with their limitations highlighted. The outcome of recent wind capacity value analyses in Europe and North America, along with some new analysis, are highlighted with a discussion of relevant issues also given

    Novel genotype-phenotype and MRI correlations in a large cohort of patients with SPG7 mutations

    Get PDF
    Objective: To clinically, genetically, and radiologically characterize a large cohort of SPG7 patients. Methods: We used data from next-generation sequencing panels for ataxias and hereditary spastic paraplegia to identify a characteristic phenotype that helped direct genetic testing for variations in SPG7. We analyzed MRI. We reviewed all published SPG7 mutations for correlations. Results: We identified 42 cases with biallelic SPG7 mutations, including 7 novel mutations, including a large multi-exon deletion, representing one of the largest cohorts so far described. We identified a characteristic phenotype comprising cerebellar ataxia with prominent cerebellar dysarthria, mild lower limb spasticity, and a waddling gait, predominantly from a cohort of idiopathic ataxia. We report a rare brain MRI finding of dentate nucleus hyperintensity on T2 sequences with SPG7 mutations. We confirm that the c.1529C>T allele is frequently present in patients with long-standing British ancestry. Based on the findings of the present study and existing literature, we confirm that patients with homozygous mutations involving the M41 peptidase domain of SPG7 have a younger age at onset compared to individuals with mutations elsewhere in the gene (14 years difference, p T compound heterozygous mutations are associated with a younger age at onset compared to homozygous cases (5.4 years difference, p < 0.022). Conclusions: Mutant SPG7 is common in sporadic ataxia. In patients with British ancestry, c.1529C>T allele represents the most frequent mutation. SPG7 mutations can be clinically predicted by the characteristic hybrid spastic-ataxic phenotype described above, along with T2 hyperintensity of the dentate nucleus on MRI

    Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus

    Get PDF
    A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10-20), ER-negative BC (P=1.1 × 10-13), BRCA1-associated BC (P=7.7 × 10-16) and triple negative BC (P-diff=2 × 10-5). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10-3) and ABHD8 (P<2 × 10-3). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3′-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk

    Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures

    Get PDF
    Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo

    Information extraction for enhanced bioprocess development

    No full text
    One by-product of the large-scale manufacture of biological products is the generation of significant quantities of process data. Typically this data is catalogued and stored in accordance with regulatory requirements, but rarely is it used to enhance subsequent production. A large amount of useful information is inherent in this data; the problems lie in the lack of appropriate methods to apply in order to extract it. The identification and/or development of tools capable of providing access to this valuable, untapped resource are therefore an important area for research. The main objective of this research is to investigate whether it is possible to attain knowledge from the information inherent within process data. The approach adopted in this thesis is to utilise the tools and techniques prevalent in the areas of data mining and pattern recognition. Through the application of these techniques, it is hypothesised that useful information can be acquired. Specifically the industrial sponsors of the research, Avecia Biologics, are interested in looking at methods for comparing new proteins to those they have previously worked on, with the intention of inferring information pertaining to the large scale manufacturing route for different processes. It is hypothesised that by comparing proteins and looking for similarities at the molecular level, it could be possible to identify potential pit-falls and bottlenecks in the recovery process before they occur. This would then allow Avecia to highlight areas of process development that may require specific attention. Two main techniques are the primary focus of the study; the Self-Organising Map (SOM) and the Support Vector Machine (SVM). Through a detailed investigation of these techniques, from benchmarking studies to applications with real-world problems, it is shown that these methods have the potential to become a useful tool for extracting information from biological process data

    A technique to track individual motor unit action potentials in surface EMG by monitoring their conduction velocities and amplitudes.

    No full text
    Item does not contain fulltextThe speed of propagation of an action potential along a muscle fiber, its conduction velocity (CV), can be used as an indication of the physiological or pathological state of the muscle fiber membrane. The motor unit action potential (MUAP), the waveform resulting from the spatial and temporal summation of the individual muscle fiber action potentials of that motor unit (MU), propagates with a speed referred to as the motor unit conduction velocity (MUCV). This paper introduces a new algorithm, the MU tracking algorithm, which estimates MUCVs and MUAP amplitudes for individual MUs in a localized MU population using SEMG signals. By tracking these values across time, the electrical activity of the localized MU pool can be monitored. An assessment of the performance of the algorithm has been achieved using simulated SEMG signals. It is concluded that this analysis technique enhances the suitability of SEMG for clinical applications and points toward a future of noninvasive diagnosis and assessment of neuromuscular disorders

    Design, Control and Performance of RiceWrist: A Force Feedback Wrist Exoskeleton for Rehabilitation and Training

    No full text
    This paper presents the design, control, and performance of a high fidelity four degree-of-freedom wrist exoskeleton robot, RiceWrist, for training and rehabilitation. The RiceWrist is intended to provide kinesthetic feedback during the training of motor skills or rehabilitation of reaching movements. Motivation for such applications is based on findings that show robot-assisted physical therapy aids in the rehabilitation process following neurological injuries. The exoskeleton device accommodates forearm supination and pronation, wrist flexion and extension, and radial and ulnar deviation in a compact parallel mechanism design with low friction, zero backlash, and high stiffness. As compared to other exoskeleton devices, the RiceWrist allows easy measurement of human joint angles and independent kinesthetic feedback to individual human joints. In this paper, joint-space as well as task-space position controllers and an impedance-based force controller for the device are presented. The kinematic performance of the device is characterized in terms of its workspace, singularities, manipulability, backlash, and backdrivability. The dynamic performance of RiceWrist is characterized in terms of motor torque output, joint friction, step responses, behavior under closed loop set-point and trajectory tracking control, and display of virtual walls. The device is singularity-free, encompasses most of the natural workspace of the human joints, and exhibits low friction, zero-backlash, and high manipulability, which are kinematic properties that characterize a high-quality impedance display device. In addition, the device displays fast, accurate response under position control that matches human actuation bandwidth, and the capability to display sufficiently hard contact with little coupling between controlled degrees-of-freedom
    corecore