65 research outputs found

    Utility of CRISPR/Cas9 systems in hematology research

    Get PDF
    Since the end of the 20th century, the development of novel approaches have emerged to manipulate experimental models of hematological disorders, so they would more accurately mirror what is observed in the clinic. Despite these technological advances, the characterization of crucial genes for benign or malignant hematological disorders remains challenging, mainly because of the dynamic nature of the hematopoietic system and the genetic heterogeneity of these disorders. To overcome this limitation, genome editing technologies have been developed to specifically manipulate the genome via deletion, insertion or modification of targeted loci. These technologies have swiftly progressed, allowing their common use to investigate genetic function in experimental hematology. Amongst them, homologous recombination (HR)-mediated targeting technologies have facilitated the manipulation of specific loci by generating knockout and knock-in models. Despite promoting significant advances in the understanding of the molecular mechanisms involved in hematology, these inefficient, time-consuming and labor-intensive approaches did not permit the development of cellular or animal models recapitulating the complexity of hematological disorders. In October 2016, Dr. Ben Ebert and Dr. Chad Cowan shared their knowledge and experiences with the utilization of CRISPR for models of myeloid malignancy, disease, and novel therapeutics. Here we provide an overview of the topics they covered including insights into the novel applications of the technique as well as its strengths and limitations

    Neurotrophins Regulate Bone Marrow Stromal Cell IL-6 Expression through the MAPK Pathway

    Get PDF
    The host's response to infection is characterized by altered levels of neurotrophins and an influx of inflammatory cells to sites of injured tissue. Progenitor cells that give rise to the differentiated cellular mediators of inflammation are derived from bone marrow progenitor cells where their development is regulated, in part, by cues from bone marrow stromal cells (BMSC). As such, alteration of BMSC function in response to elevated systemic mediators has the potential to alter their function in biologically relevant ways, including downstream alteration of cytokine production that influences hematopoietic development.In the current study we investigated BMSC neurotrophin receptor expression by flow cytometric analysis to determine differences in expression as well as potential to respond to NGF or BDNF. Intracellular signaling subsequent to neurotrophin stimulation of BMSC was analyzed by western blot, microarray analysis, confocal microscopy and real-time PCR. Analysis of BMSC Interleukin-6 (IL-6) expression was completed using ELISA and real-time PCR.BMSC established from different individuals had distinct expression profiles of the neurotrophin receptors, TrkA, TrkB, TrkC, and p75(NTR). These receptors were functional, demonstrated by an increase in Akt-phosphorylation following BMSC exposure to recombinant NGF or BDNF. Neurotrophin stimulation of BMSC resulted in increased IL-6 gene and protein expression which required activation of ERK and p38 MAPK signaling, but was not mediated by the NFkappaB pathway. BMSC response to neurotrophins, including the up-regulation of IL-6, may alter their support of hematopoiesis and regulate the availability of inflammatory cells for migration to sites of injury or infection. As such, these studies are relevant to the growing appreciation of the interplay between neurotropic mediators and the regulation of hematopoiesis

    Reframing Academic Productivity, Promotion and Tenure As a Result of the COVID-19 Pandemic

    Get PDF
    Faculty members have been impacted in a multitude of ways by the COVID-19 pandemic. In particular, faculty seeking promotion and tenure have been impacted by the disruption and inconsistent levels of productivity. In this article, we consider academic productivity in the context of clinical, research, education and service missions within higher education and the academic medicine professoriate. We offer a series of recommendations to faculty members, to institutions, and to professional societies in hopes we can challenge pre-existing deficits in promotion and tenure processes, and academic worth

    Enhancing Hematopoietic Stem Cell Transplantation Efficacy by Mitigating Oxygen Shock

    Get PDF
    Hematopoietic stem cells (HSCs) reside in hypoxic niches within bone marrow and cord blood. Yet, essentially all HSC studies have been performed with cells isolated and processed in non-physiologic ambient air. By collecting and manipulating bone marrow and cord blood in native conditions of hypoxia, we demonstrate that brief exposure to ambient oxygen decreases recovery of long-term repopulating HSCs and increases progenitor cells, a phenomenon we term extraphysiologic oxygen shock/stress (EPHOSS). Thus, true numbers of HSCs in the bone marrow and cord blood are routinely underestimated. We linked ROS production and induction of the mitochondrial permeability transition pore (MPTP) via cyclophilin D and p53 as mechanisms of EPHOSS. The MPTP inhibitor cyclosporin A protects mouse bone marrow and human cord blood HSCs from EPHOSS during collection in air, resulting in increased recovery of transplantable HSCs. Mitigating EPHOSS during cell collection and processing by pharmacological means may be clinically advantageous for transplantation

    Bone Marrow Osteoblast Damage by Chemotherapeutic Agents

    Get PDF
    Hematopoietic reconstitution, following bone marrow or stem cell transplantation, requires a microenvironment niche capable of supporting both immature progenitors and stem cells with the capacity to differentiate and expand. Osteoblasts comprise one important component of this niche. We determined that treatment of human primary osteoblasts (HOB) with melphalan or VP-16 resulted in increased phospho-Smad2, consistent with increased TGF-ÎČ1 activity. This increase was coincident with reduced HOB capacity to support immature B lineage cell chemotaxis and adherence. The supportive deficit was not limited to committed progenitor cells, as human embryonic stem cells (hESC) or human CD34+ bone marrow cells co-cultured with HOB pre-exposed to melphalan, VP-16 or rTGF-ÎČ1 had profiles distinct from the same populations co-cultured with untreated HOB. Functional support deficits were downstream of changes in HOB gene expression profiles following chemotherapy exposure. Melphalan and VP-16 induced damage of HOB suggests vulnerability of this critical niche to therapeutic agents frequently utilized in pre-transplant regimens and suggests that dose escalated chemotherapy may contribute to post-transplantation hematopoietic deficits by damaging structural components of this supportive niche

    Banff 2022 liver group meeting report: monitoring long term allograft health.

    Get PDF
    The Banff Working Group on Liver Allograft Pathology met in September 2022. Participantsincluded hepatologists, surgeons, pathologists, immunologists and histocompatibility specialists.Presentations and discussions focused on the evaluation of long-term allograft health, including noninvasive and tissue monitoring, immunosuppression optimisation and long-term structural changes.Potential revision of the rejection classification scheme to better accommodate and communicate lateT cell-mediated rejection patterns and related structural changes, such as nodular regenerativehyperplasia, were discussed. Improved stratification of long-term maintenance immunosuppression tomatch the heterogeneity of patient settings will be central to improving long-term patient survival.Such personalised therapeutics are in turn contingent on better understanding and monitoring ofallograft status within a rational decision-making approach, likely to be facilitated in implementationwith emerging decision support tools. Proposed revisions to rejection classification emerging fromthe meeting include incorporation of interface hepatitis and fibrosis staging. These will be opened toonline testing, modified accordingly and subject to consensus discussion leading up to the next Banffconference

    Attitudes and behaviour predict women's intention to drink alcohol during pregnancy: the challenge for health professionals

    Get PDF
    Background. To explore women's alcohol consumption in pregnancy, and potential predictors of alcohol consumption in pregnancy including: demographic characteristics; and women's knowledge and attitudes regarding alcohol consumption in pregnancy and its effects on the fetus. Methods. We conducted a national cross-sectional survey via computer assisted telephone interview of 1103 Australian women aged 18 to 45 years. Participants were randomly selected from the Electronic White Pages. Pregnant women were not eligible to participate. Quotas were set for age groups and a minimum of 100 participants per state to ensure a national sample reflecting the population. The questionnaire was based on a Health Canada survey with additional questions constructed by the investigators. Descriptive statistics were calculated and logistic regression analyses were used to assess associations of alcohol consumption in pregnancy with participants' characteristics, knowledge and attitudes.Results. The majority of women (89.4%) had consumed alcohol in the last 12 months. During their last pregnancy (n = 700), 34.1% drank alcohol. When asked what they would do if planning a pregnancy (n = 1103), 31.6% said they would consume alcohol and 4.8% would smoke. Intention to consume alcohol in a future pregnancy was associated with: alcohol use in the last pregnancy (adjusted OR (aOR) 43.9; 95% Confidence Interval (CI) 27.0 to 71.4); neutral or positive attitudes towards alcohol use in pregnancy (aOR 5.1; 95% CI 3.6 to 7.1); intention to smoke in a future pregnancy (aOR 4.7; 95% CI 2.5 to 9.0); and more frequent and higher current alcohol consumption. Conclusions. Women's past pregnancy and current drinking behaviour, and attitudes to alcohol use in pregnancy were the strongest predictors of alcohol consumption in pregnancy. Targeted interventions for women at higher risk of alcohol consumption in pregnancy are needed to change women's risk perception and behaviour

    Causal effect of plasminogen activator inhibitor type 1 on coronary heart disease

    Get PDF
    Background--Plasminogen activator inhibitor type 1 (PAI-1) plays an essential role in the fibrinolysis system and thrombosis. Population studies have reported that blood PAI-1 levels are associated with increased risk of coronary heart disease (CHD). However, it is unclear whether the association reflects a causal influence of PAI-1 on CHD risk. Methods and Results--To evaluate the association between PAI-1 and CHD, we applied a 3-step strategy. First, we investigated the observational association between PAI-1 and CHD incidence using a systematic review based on a literature search for PAI-1 and CHD studies. Second, we explored the causal association between PAI-1 and CHD using a Mendelian randomization approach using summary statistics from large genome-wide association studies. Finally, we explored the causal effect of PAI-1 on cardiovascular risk factors including metabolic and subclinical atherosclerosis measures. In the systematic meta-analysis, the highest quantile of blood PAI-1 level was associated with higher CHD risk comparing with the lowest quantile (odds ratio=2.17; 95% CI: 1.53, 3.07) in an age- and sex-adjusted model. The effect size was reduced in studies using a multivariable-adjusted model (odds ratio=1.46; 95% CI: 1.13, 1.88). The Mendelian randomization analyses suggested a causal effect of increased PAI-1 level on CHD risk (odds ratio=1.22 per unit increase of log-transformed PAI-1; 95% CI: 1.01, 1.47). In addition, we also detected a causal effect of PAI-1 on elevating blood glucose and high-density lipoprotein cholesterol. Conclusions--Our study indicates a causal effect of elevated PAI-1 level on CHD risk, which may be mediated by glucose dysfunction
    • 

    corecore