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Summary

Hematopoietic stem cells (HSCs) reside in hypoxic niches within bone marrow and cord blood. 

Yet, essentially all HSC studies have been performed with cells isolated and processed in non-

physiologic ambient air. By collecting and manipulating bone marrow and cord blood in native 

conditions of hypoxia, we demonstrate that brief exposure to ambient oxygen decreases recovery 
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of long-term repopulating HSCs and increases progenitor cells, a phenomenon we term Extra 

Physiologic Oxygen Shock/Stress (EPHOSS). Thus, true numbers of HSCs in the bone marrow 

and cord blood are routinely underestimated. We linked ROS production and induction of the 

mitochondrial permeability transition pore (MPTP) via cyclophilin D and p53 as mechanisms of 

EPHOSS. MPTP inhibitor Cyclosporine A protects mouse bone marrow and human cord blood 

HSCs from EPHOSS during collection in air, resulting in increased recovery of transplantable 

HSCs. Mitigating EPHOSS during cell collection and processing by pharmacological means may 

be clinically advantageous for transplantation.

Abstract

Introduction

HSCs give rise to all the blood forming elements and their presence in bone marrow (BM), 

mobilized peripheral blood, and cord blood (CB) has allowed their harvesting for treatment 

of malignant and non-malignant disorders. However, the rarity of HSCs, particularly in cord 

blood grafts, can be a limitation of hematopoietic cell transplantation (Ballen et al, 2013). 

Uncovering mechanisms in HSC biology can identify new strategies to enhance numbers 

and function of HSCs and improve engraftment efficacy. While HSCs and hematopoietic 

progenitor cells (HPCs) proliferate better in-vitro in hypoxia than normoxia (Bradley et al., 

1978; Broxmeyer et al., 1985; Danet et al., 2003; Lu and Broxmeyer, 1985; Smith and 

Broxmeyer, 1986), all HSC/HPC studies are performed after cell collection and processing 

in ambient air (∼21% O2) regardless of subsequent processing in hypoxia or air. The BM 

and CB environment where HSCs reside is extremely hypoxic compared to air (Morrison 

and Scadden, 2014, Nombela-Arrieta et al., 2013, Spencer et al., 2014). Thus, HSC 

collection in air is grossly hyperoxic compared to the BM microenvironment.

Stem cells rely heavily on glycolysis instead of mitochondrial respiration for bioenergetic 

demands (Xu et al., 2013). Mouse long term repopulating (LT)-HSCs harbor significant 
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numbers of mitochondria that appear to be inactive or “nascent”, and poised for rapid 

activation (Mantel et al., 2010). This is associated with initial differentiation of quiescent 

LT-HSCs into “activated” HSCs and short-term repopulating (ST)-HSCs. In mice, this is 

linked to lack of CD34 expression, and increased CD150 expression (Anjos-Afonso et al., 

2013; Doulatov, et. al., 2012; Ema et al., 2007; Mantel et al., 2010), and is also thought to 

involve ROS (Jang and Sharkis, 2007; Lewandowski et al., 2010), a normal by-product of 

respiration that promotes HSC differentiation (Broxmeyer and Mantel, 2012; Ito et al., 2004; 

2006; Tothova and Gilliland, 2009; Yalcin et al., 2008). We recently linked mitochondrial 

respiratory dysfunction and ROS overproduction to depletion of LT-HSCs, effects partially 

rescued by the ROS scavenger, N- acetyl-cysteine (Mantel et al., 2012). Therefore, we 

hypothesized that suppressing ROS during HSC collection and processing in a more 

physiological low O2 environment (hypoxia), might offer protection from mitochondrial 

dysfunction and result in increased HSC recovery.

Here we provide a rigorous analysis of how brief exposure of HSCs to air affects the 

efficiency of HSC collection and transplantation success, and describe the molecular 

mechanisms underlying it. We show that exposure to air during collection limits the yield of 

HSCs from BM and CB, and name this phenomenon “Extra Physiologic Oxygen Shock/

Stress” (EPHOSS). EPHOSS effects are mediated by ROS production linked to cyclophilin 

D (CypD), p53, and the mitochondrial permeability transition pore (MPTP). Importantly, 

inhibition of EPHOSS using Cyclosporine A enhances the yield of HSCs and the efficacy of 

their transplantation. This phenomenon, suggesting that greater numbers of HCS reside in 

hematopoietic tissues and that their in vivo metabolism is different from the one ex-vivo in 

air raises questions regarding in-vivo relevance of studies of HSC and HPC collected in air. 

Moreover, hematopoietic cell transplantation, especially where donor HSCs are limited, may 

be improved if EPHOSS is prevented or attenuated by collection and processing of cells 

under hypoxia, or alternatively in air in the presence of Cyclosporine A, or through other 

pharmacological targeting of the MPTP.

Results

Effects of “Hypoxic-Harvest”

To limit ROS production and HSC differentiation, mouse BM was collected/processed 

under constant hypoxia (3% O2), and compared to air-harvested BM: either, one femur was 

harvested inside a hypoxic chamber and the other in air, or BM was collected in the chamber 

and aliquots exposed to ambient air or left in the chamber for processing. Figure S1A shows 

the hypoxic chamber used for these studies. Most importantly, all reagents and supplies were 

equilibrated to hypoxia (3% O2) for at least 18 hrs prior to use.

Up to five-fold greater numbers of phenotypically defined mouse BM LT-HSCs 

(Lineage-Sca1+c-kit+(LSK)CD48-CD34-) were recovered by harvesting and maintaining 

cells in constant hypoxia (3% O2) compared to air (Figure 1A). Similar increases were noted 

when cells were collected and processed in hypoxia (H→H), compared to cells collected in 

hypoxia then placed in air (H→A) for 60 minutes prior to assessment (Figure 1B), an effect 

rapidly lost, if cells were exposed to air for as short as 30 minutes (Figure 1C). This pattern 

was also observed if CD150 (Oguro, et al., 2013) was used to phenotypically delineate LT-
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HSCs instead of CD34 (CD150+CD48-CD41-LSK; Figure S1B). As the CD48-CD41-LSK 

population displays less CD34 on their surface, they increase CD150 expression (Figure 

1D). This verifies that phenotypically-defined mouse BM LT-HSCs are recovered in greater 

numbers when harvested in hypoxia and prevented from any exposure to air, regardless of 

phenotypic markers utilized. ROS levels were increased in LT-HSCs and CD48- LSK cells 

(containing HSCs and HPCs) harvested in air compared to hypoxia (Figure 1E). Elevated 

mitochondrial activities (Figure 1Fi) and increased numbers of primitive cells with 

hyperpolarized mitochondria (Figure 1Fii) were found in air harvested BM. Thus, decreased 

LT-HSCs correlated with augmented mitochondrial activity in air-exposed BM cells. 

Numbers of ST-HSCs (CD34+CD48-LSK cells) and multi-potent progenitors (MPPs; 

CD48-Lin-c-kit+Sca1-) were increased after air exposure (Figure 1G and Figure S1C) 

suggesting rapid differentiation of LT-HSC to ST-HSC and HPC in air. Hypoxic-harvested 

BM contained reduced numbers and cell cycling of immature subsets of multi-cytokine 

stimulated HPCs (Figure 1H; assessed by colony assays), consistent with reduced ROS-

mediated cytokine–induced signaling and differentiation (Sattler, et al., 1999). Thus, true 

numbers/frequency of LT-HSCs have previously been greatly underestimated and numbers 

and cycling status of HPCs overestimated in mouse BM as they exist in their native low [O2] 

environment. Collection/processing of mouse BM at 5% O2 did not increase numbers of 

HSCs as did 3% O2 (Figure S1D).

Human CB is also hypoxic compared to ambient air (Sjostedt et al., 1960). Thus, human CB 

was collected with syringes designed to greatly minimize exposure of CB to air 

(Experimental Procedures) and was typically transferred within 10 minutes into the hypoxic 

chamber for further processing. Human CB-derived HSCs, identified as Lin-

CD34+CD38-CD45RA-CD90+CD49f+ (Notta et al., 2011; Doulatov et al., 2012), resulted in 

∼3-fold greater recovery compared to cells handled in air (Figure 1I), consistent with mouse 

BM hypoxic-harvests, suggesting exquisite sensitivity of HSCs to EPHOSS, and 

demonstrating that EPHOSS is not restricted to BM.

Since phenotype does not always recapitulate function, especially under stress (Broxmeyer 

et al., 2012), we assessed HSC function by competitive transplantation. Mouse BM was 

harvested, processed, and injected into mice in a hypoxic chamber, or cells were collected in 

hypoxia, exposed to air for >60 minutes before processing and transplantation in air. A 

custom mouse respiration device facilitated tail vein injection inside the hypoxic chamber 

(Figure S1E). Recipient mice were only briefly (<10 sec) exposed to low O2. Competitor 

BM was collected in air and infused after the donor cells. Engraftment was significantly 

increased when donor BM was harvested, processed, and transplanted in low O2, compared 

to BM harvested in hypoxia and then exposed to air (Figure 2Ai), consistent with increased 

numbers of functional HSCs being present in hypoxic-harvested BM. Low-level engraftment 

was seen with air-exposed donor cells, while engraftment of hypoxia-harvested, processed, 

and i.v.-injected donor BM cells resulted in quite significant enhancement in peripheral 

blood and BM chimerism in primary mice, as well as enhanced repopulation in secondary 

mice. Two other similar engraftment experiments were performed, including one with “air-

only” harvest compared to “hypoxic-only” harvest. Chimerism of air-harvested donor cells 

was higher in the two latter experiments than that in Figure 2Ai even though similar donor 

to competitor numbers were used. Combined results of all three experiments demonstrated 
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significant enhancement for hypoxia-harvested, processed, and injected BM donor cells 

(Figure 2Aii and Figure S2A (Competitive repopulation units (RUs), as calculated by the 

method of Harrison and Astle, 1997)). Limiting dilution analysis at month 3 for PB and 

month 7/8 for BM performed for 2 of the experiments shown in Figure 2Aii for hypoxia vs. 

air harvested cells demonstrated increased Competitive Repopulating Units (CRUs) 

respectively of 2.5 and 2.4 fold (Figure 2Aiii; Figure S2B). There was no significant 

difference in lymphoid and myeloid end stage cell graft contribution in air vs. hypoxia 

harvested, processed, and injected cells in the engrafted mice (Figure S2C). Enhanced 

engraftment of hypoxic-harvested/processed cells was not due to homing (Figure 2B; 

“homed” LSK cells were collected in hypoxia and then analyzed either in hypoxia or 1 hour 

after placement in air with no differences noted for “homed” cells either way). Enhanced 

engraftment did not correlate with enhanced CXCR4 expression, which was decreased on 

hypoxic- compared to air-harvested LT-HSCs (Fig 2C). Apoptosis, assessed by intracellular 

active caspase-3 levels, was not different when hypoxic-harvested BM was exposed to air 

for 60 min (Figure 2D and Figure S2D and E). So, cell death could not explain loss of HSC 

when BM was exposed to air. The picture emerging from our studies is that harvesting 

donor BM in air, or even brief exposure to air (i.e. in response to EPHOSS), has a rapid, 

deleterious effect on numbers and repopulating potential of HSC.

Mechanisms of EPHOSS were assessed for biologic insights, and alternative means of 

collecting cells to mimic effects seen in low O2 for practical applicability. Physiological 

damage from heart attack, stroke, and other ischemic events occurs upon restoration of 

circulation and tissue “re-oxygenation”. So-called ischemia-reperfusion damage is believed 

initiated by a burst of oxygen radicals rapidly produced by mitochondria (Kalogeris et al., 

2012; Perrelli, 2011), with some similarity to air BM harvest. Induction of the MPTP is 

implicated in mechanisms of ischemia-reperfusion damage (Griffiths and Halestrap, 1995; 

Kim et al., 2003; Lim et al., 2010). This may be similar to what HSCs experience upon 

harvest in ambient air, with induction of the MPTP via oxidative stress. While oxidative 

stress favors MPTP induction resulting in mitochondrial swelling and OXPHOS uncoupling 

(Halestrap and Davidson, 1990) leading to apoptosis and necrosis (Vaseva et al., 2012), 

MPTP opening can also be intermittent/transient and function in a regulatory capacity 

conducive to regulation of differentiation of stem cells. We hypothesized that the MPTP is 

involved in EPHOSS because of similarities to ischemia-reperfusion.

MPTP is key to EPHOSS mechanism

A key regulatory component of the MPTP is peptidyl-prolyl cis-trans isomerase or 

Cyclophilin D (CypD; also called cylophilin F) which is encoded by the Ppif gene and 

regulates MPTP induction (Tanveer et al. 1996). Oxidative stress facilitates recruitment of 

mitochondrial CypD to the inner membrane and promotes MPTP induction (Connern and 

Halestrap, 1994). Cyclosporin A (CSA) a small molecule inhibitor of CypD binds CypD, 

antagonizes MPTP induction (Halestrap and Davidson, 1990; McGuinness et al., 1990; 

Nicolli et al., 1996), and prevents ischemia-re-oxygenation damage (Hausenloy et al., 2012). 

Federal Drug Administration approved CSA is being tested for treatment of heart attack and 

stroke, and is an immunosuppressant in graft vs. host disease (GVHD) for HCT (Junghanss 

et al., 2012; Kikuchi et al., 2012). To test MPTP involvement in EPHOSS mechanisms, and 
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for possible protective effects of MPTP inhibition, BM was harvested in air with CSA. 

Harvest of cells with CSA resulted in ∼4-fold significant increase in recovery of LT-HSC 

numbers (Figure 3A-C). LT-HSCs declined rapidly when BM was harvested in air without 

CSA (Figure 3Ciii), consistent with kinetics in hypoxic/air-harvest experiments (Figure 1). 

CSA-harvest also suppressed multi-cytokine induced proliferation of CFU-GM (Figure 3D), 

implicating CypD and the MPTP in cytokine signaling/function. Delaying addition of CSA 

for 15 min. while collecting mouse BM in air did not rescue the EPHOSS effect, and 

resulted in decreased numbers of LT-HSC, and increased numbers of ST-HSC and MPP, 

along with increased ROS in the 3 cell types (Figure S3).

Non MPTP-related immunosuppressive CSA effects are mediated by inhibition of the 

calcineurin pathway (Liu, et al., 1991). To determine if this pathway is involved in CSA 

protection against EPHOSS, BM was harvested in air with calcineurin inhibitor, FK506, 

which does not inhibit the MPTP and is used to address specificity of agents thought to 

affect the MPTP (Friberg et al., 1998). “FK506-harvest” did not protect LT-HSCs from 

EPHOSS (Figure 3E), confirming CSA protects LT-HSCs from EPHOSS via suppression of 

the MPTP. BM was also harvested in air in the presence of carboxyatractylate (CAT), an 

agent that binds to adenine nucleotide translocase, stabilizes it in the c-conformation, and 

favors MPTP opening (Halestrap and Brenner, 2003). “CAT-harvest” resulted in loss of LT-

HSC recovery (Figure 3F), which was greater than that by air-harvest alone. ROS levels 

were reduced in LT-HSCs and HPCs when BM was harvested with CSA, but increased in 

presence of CAT (Figure 3G), further supporting MPTP opening mediated ROS generation 

in molecular mechanisms of EPHOSS. To determine if “CSA-harvest” protects functional 

HSCs from EPHOSS, we performed competitive repopulation experiments. BM harvested in 

the presence of CSA from donor mice that were pretreated with CSA had enhanced 

competitive engraftment as determined by donor cell chimerism (Figure 3Hi), CRUs from 

limiting dilution analysis (Figure 3Hii, Figure S4A), RUs calculated by the method of 

Harrison and Astle, 1997 (Figure S4B), and enhanced secondary repopulation (Figure 3Hi). 

Lymphoid and myeloid cell numbers of CSA vs. non-CSA collected, processed, and injected 

cells in the engrafted mice were similar (Figure S4C).

To assess potential clinical applicability, we performed engraftment studies of CSA (diluted 

in DMSO) vs. DMSO control collection and processing of human CB. In two separate 

experiments, there were increased numbers of human CD34+ cells and LT-HSCs and 

decreased MPP numbers (Figure 4A). There was enhanced engraftment in NSG mice of 

CSA collected and processed CB, as assessed by limiting dilution analysis for SCID 

Repopulating Cells (SRCs) (Figure 4Bi-4Biii; Figure S5Ai - Aiii), without significant 

differences in lymphoid and myeloid end stage cell graft contribution (Figure S5B). Data in 

Figure 3 and Figure 4A-C demonstrates that regulation of the MPTP by CypD is an 

important mechanism of EPHOSS, and suppression of CypD opening of the MPTP with 

CSA may have practical clinical value.

MPTP-cyclophilin D-p53 Axis is involved in EPHOSS

We reasoned that CypD gene deletion, which prevents MPTP induction (Baines et al., 2005; 

Baines, 2010; Kalogeris et al., 2012), might protect against EHPOSS. CypD -/- mice are 
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protected against MPTP-dependent ischemia-reperfusion damage (Baines et al., 2005 

Schinzel et al., 2005; Nakagawa et al., 2005). LT-HSC recovery was significantly increased 

(Figure 4Ci), and ROS levels in LT-HSC significantly reduced (Figure 4Cii) in CypD -/- 

BM harvested in air. HPC numbers were fewer in CypD -/- BM (Figure 4D) and colony 

formation of CFU-GM in response to stimulation by a different multi-cytokine combination 

was also inhibited (Figure 4E), analogous to results of CSA treatments (Figure 3D). This 

strongly implicates CypD and MPTP mediated ROS production in cytokine signaling/

stimulation of HPC proliferation. Chimerism (Figure 4Fi) and limiting dilution analysis to 

calculate CRUs, along with analysis of lymphoid/myeloid engraftment (Figure 4Fii; Figure 

S5C-F) demonstrated increased engrafting capability of CypD-/-BM HSC without changes 

in numbers of lymphoid and myeloid cells. The importance of the MPTP in EPHOSS is 

demonstrated in Figure 4C-F.

ROS can be produced by mitochondrial and non-mitochondrial sources. Mitochondrial ROS 

production in cells predominantly occurs in the electron transport chain and is therefore 

closely linked to respiratory activity, which in turn depends on coupling to ATP synthesis. 

We wondered if CypD-/- cells may have any abnormalities in respiration and OXPHOS and 

if these abnormalities could clarify mechanisms behind lower ROS generation in CypD-/- 

cells. We used a Seahorse XF96 flux analyzer to assess cell respiration. Because LT-HSCs 

are rare, we used a surrogate hematopoietic cell, a strategy used previously (Mantel, et al., 

2012). Non-mitochondrial respiration in CypD-/- cells was similar to that in WT cells and 

well coupled to ATP synthesis as determined by inhibition of respiration by rotenone and 

sensitivity to oligomycin A, respectively (Figure S6). Basal respiration and maximal 

respiratory capacity was higher in CypD-/- cells compared to WT cells, suggesting a 

potential mechanistic link between mitochondrial electron transport chain/respiration 

regulation and reduced ROS generation in hematopoietic cells in the absence of CypD.

p53 deletion is one of few gene deletions resulting in increases in HSC numbers and 

engraftment (Copley et al., 2012; Nii et al., 2012; Rossi et al., 2012). Recent findings 

indicate that p53 may facilitate MPTP opening (Vaseva et al, 2012; Zhen et al., 2014). We 

hypothesized that p53-/- might protect HSCs from EPHOSS by suppressing MPTP opening. 

We also considered if resistance to EPHOSS could have had a role in interpretation of 

results leading to the idea that p53-/- BM contains increased HSCs. We now report that 

expected increases in HSC numbers in p53-/- mouse BM are not apparent with BM 

harvested and assayed in 3% O2, and is only apparent when BM is harvested and exposed to 

air (Figure 5A), suggesting a role for p53 in HSC biology directly related to EPHOSS. This 

may influence current concepts about effects of p53-/- on HSC biology in-vivo. We also 

noted decreased numbers and cell cycle of p53-/- HPCs compared to WT if BM was 

harvested in low [O2] and exposed to air (Figure 5B). However, if p53-/- BM was harvested 

and cultured in low [O2], there were increased numbers and cycling of progenitors compared 

to WT BM harvested and cultured the same way. Therefore, analogous to effects of hypoxic 

harvest of LT-HSCs from p53-/- mice (Figure 5A), interpretation of effects of p53-/- on 

functional HPC is highly dependent on whether BM was exposed to air, and suggests 

involvement of a p53-CypD-MPTP axis in EPHOSS mechanisms.
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HIF-1a, miR210, and EPHOSS

Most tissues in the human body reside in an O2 environment considerably lower than that of 

ambient air. If cells/tissues like HSCs that normally reside in low O2 conditions are 

collected and studied in ambient air, this could lead to incomplete understanding of their 

biology/biochemistry unless EPHOSS is considered.

To gain additional support for this idea, we investigated two other gene deletions models 

connected to the biology of hypoxia: the hypoxamir miR210 and HIF-1α (Chan and 

Loscalzo, 2010; Devlin et al., 2011; Speth et al, 2014; Zhang et al., 2012). We wished to see 

if mir210 and HIF-1α may be linked to EPHOSS, and to discern if we would detect 

differences in HSC and HPC numbers from these gene knockout mice compared to control 

mice when cells are collected in air vs. 3% O2. Deletion of either gene suppressed hypoxic-

harvest-enhanced recovery of LT-HSCs (Figure 5Ci and ii) with amelioration of decreased 

recovery of ST-HSCs and MPPs by hypoxic harvest compared to WT controls. Hypoxic 

harvest of cells from control mice resulted, as already shown in Figure 1H, in decreased 

functional HPCs from WT BM, an effect not seen in either miR210-/- or hif-1α–/– (Figure 

5Di and ii). These data implicate miR210 and hif-1α in EPHOSS, but don't yet elucidate 

mechanistic links. The experimental results obtained were dependent on BM harvest 

conditions, similar to what was observed for the CypD-/- and p53-/- models.

Discussion

Our studies illuminate several seminal concepts. First, HSCs from mouse BM or human CB 

can be collected in greater numbers than previously recognized, and which have been until 

now significantly underestimated by routine harvesting and processing in air. This 

information could lead to improvements especially for CB-hematopoietic cell 

transplantation where low cell numbers collected in single units create clinical limitations 

(Ballen et al., 2013). Moreover, there is a potential for rapid clinical translation because 

CSA, which protects HSCs from EPHOSS during air-harvest via inhibition of the MPTP, is 

already used clinically as an immunosuppressant.

On a more fundamental level, our study also provides insight into the cellular effects of 

oxygen exposure, linking hypoxia, CypD, and the MPTP in cytokine signaling/functions, 

and suggesting new types of “mitochondria-centric” cytokine signal transduction pathways 

that precisely link proliferation and differentiation signals to cellular bioenergetics, 

metabolism, and programmed cell death via the MPTP. Moreover, using four gene deletion 

mouse models we highlight how interpretation of experimental results of gene deletion 

models can be influenced by EPHOSS. While CypD or p53 deletion have an EPHOSS-

protective effect, miR210 and hif-1α deletion abrogates protection afforded by hypoxic 

harvest. This reveals a specificity of EPHOSS requirements relative to several different 

factors that will have to be further evaluated.

Because different adult stem cells naturally exist in hypoxic niches, EPHOSS may be 

relevant to other stem cells routinely harvested in air. Embryonic stem cells in the inner cell 

mass of blastocysts, as well as cancer stem cells, all reside in hypoxic environments (Brown 

and Giaccia, 1998; Hill et al., 2009; Millman et al., 2009; Mohyeldin et al., 2010) and ROS 
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is important in growth, differentiation, and regulation of these cells (Tothova and Gilliland, 

2009). Human ESCs derived from 8-cell embryos thawed from liquid nitrogen under 5% O2 

better maintained pluripotency, although in those studies embryos were originally harvested 

in air (Lengner et al., 2010). Another important point to consider here is that there is much 

information about the metabolic regulation of HSCs (Suda et al., 2011), and some may now 

need to be rigorously re-evaluated in context of EPHOSS. One example of issues arising 

from our findings is that metabolic profiling for development of “personal” therapeutic 

strategies to target cancer stem cells (Hsu and Sabatini, 2008; Kamleh et al., 2011; Wood et 

al., 2014) may not accurately represent the metabolism of these cells as they exist in their 

native hypoxic environments because they are harvested and studied in air. It is also 

possible, and indeed highly likely, that EPHOSS will influence the metabolism and 

differentiation of other cell types including lymphocytes, monocytes/macrophages, 

neutrophils, fibroblasts, and others, since these cells also reside in hypoxic environments.

Another point deserving exploration is detrimental effects of aging on HSCs and other 

tissue-specific stem cells (Chambers et al., 2007; Ergen and Goodell, 2010; Mantel and 

Broxmeyer, 2008; Mantel et al., 2011; Sudo et al., 2000). ROS is considered a major driver 

in aging (Finkel et al., 2007; Harper et al., 2004), and it is possible that stem cells from aged 

animals are more vulnerable to EPHOSS-linked ROS production when studied in air. Thus, 

cells collected from aged animals or humans using efforts that mitigate EPHOSS effects 

may have greater therapeutic potential.

In summary, we believe that knowledge of EPHOSS will have widespread ramifications for 

studies of cellular metabolism and function in many stem/progenitor and other cell systems.

Experimental Procedures

Animals

Mice used for most BM harvests and for transplantation were female C57BL6/J and 4-6 

weeks of age, while mice for the other experiments were males and females with ages 

ranging from 6-20 weeks of age. Mice were age and sex-matched. In some cases, controls 

were littermates. Constitutive CypD -/- (Ppif-/-) mice (B6; 129-Ppiftm/JMOL/J) were 

purchased from Jackson Laboratory (Bar Harbor, ME). We verified knock-out of CypD in 

hematopoietic cells by Western blotting (Figure S7A). p53-/- mice on Bl/6 background were 

as reported (Jacks et al., 1994; Vemula et al., 2012), and knock-out verified by PCR (Figure 

S7B). Tamoxifen-induced conditional hif1α-/- mice were as reported where ERT-2 Cre + 

Flox ± and their ERT-2 Cre-Flox +/+ littermate controls both received Tamoxifen and 

knock-out confirmed by PCR (Speth et al., 2014). miR210-/- mice were developed in the 

laboratory of Nabeel Bardeesy (Massachusetts General Hospital, Boston, MA) and 

successful KO determined by PCR (Figure S7C). See Extended Experimental Procedures. 

Bl/6, B6BoyJ and F1 mice were from our Animal Cores.

Flow cytometry

This was done using an LSRII cytometer or FACS Caliber (Becton Dickenson, San Diego, 

CA) and chromophore-conjugated antibodies used for mouse BM cell phenotyping (Mantel 
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et al., 2010; 2012). See also Figure S1C. Antibodies used for human phenotyping (Notta et 

al., 2011) were anti-lineage cocktail, CD34, CD38, CD45RA, CD90, and CD49f (BD 

Biosciences). For mitochondrial mass, membrane potential, and ROS analysis (Mantel et al., 

2010; 2012), we used Mitotracker Green FM, JC-1, and Mitotracker Orange CMTMRos 

respectively (Molecular Probes, Life Technologies; Grand Island, NY). CXCR4 antibodies 

were purchased from BD Biosciences. Phenotyping for mouse transplant chimerism/

engraftment analysis was as noted (Mantel et al., 2012; Broxmeyer et al., 2012). Flow 

cytometric analysis of apoptosis was assessed by activated caspase-3 (Mantel, et al., 2007).

Cell Harvests

Hypoxic BM harvest was done in a custom configured, temperature, humidity, O2, CO2 

controlled glove box (Figure S1; Hypoxic Chamber; Coy, Inc., Green Lakes, Michigan) 

routinely maintained at 3% oxygen, 5% CO2, and nitrogen balance. After sacrifice, animals 

were immediately passed into the chamber through a gassed air lock where femurs were 

obtained and flushed. All solutions, media, reagents, and especially all plastic ware and pipet 

tips, sterile gauze, and anything that could come into contact with either the femur or the 

flushed BM cells was pre-equilibrated in the hypoxic chamber for at least 18 hours prior to 

their use. Subsequent procedures such as surface marker staining and fixation and colony 

assay procedures were done inside the chamber (Extended Experimental Procedures). CSA-

harvests (50ug/ml) were used for BM collection and also injected i.p. at 100ug into mice 

18-24 hours before BM harvest, although subsequent experiments did not demonstrate 

differences in CSA collection of HSCs whether or not mice were injected with CSA before 

collection of BM cells in CSA. FK506 and CAT were used at 50μg/ml. CSA, FK506, and 

CAT were purchased from Sigma Chem. Co., St. Louis, MO.

Human CB was harvested as reported (Broxmeyer et al., 2006), except airtight arterial blood 

gas-syringes (McKesson Medical-Surgical, Richmond, VA) equilibrated in the hypoxic 

chamber were used such that exposure to air was greatly minimized. Syringes were 

transported from delivery room to laboratory in airtight plastic containers, and placed back 

into the hypoxic chamber often within 10 minutes of collection. A portion of hypoxic-

harvested CB was exposed to air. Centrifugation of hypoxic harvested BM and CB was done 

inside the hypoxic chamber or airtight tubes in tabletop centrifuges.

Collection of CB was performed within 5 minutes of placental delivery. Through a single 

venipuncture, 15-25ml of blood was harvested into a 60cc syringe containing 20ml of either 

phosphate buffered saline (PBS) with heparin (H)(Sigma #H3393) at 1000 units/ml and 

CSA(Sigma #P500092) at 50ug/ml or PBS/H with DMSO (D) at equivalent volume of CSA. 

Each collection was immediately added respectively to 50ml of either PBS/H/CSA or 

DPBS/H/D in a sterile container and mixed thoroughly. Blood was further processed for 

mononuclear cells and enriched for CD34 cells using standard protocols for Ficoll 

separation and micro-bead isolation with all solutions respectively containing either CSA at 

50ug/ml or equivalent volume of DMSO.
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Transplantation

Recipient F1 mice were continuously fed uniprim feed and irradiated with one dose of 

950cGy 24 hours prior to transplantation with engraftment (Broxmeyer et al., 2012) detailed 

in Figure legends. Homing is described in Extended Experimental Procedures.

Limiting dilution analysis (LDA)

The frequency of mouse CRUs and human SRCs were analyzed by LDA as previously 

reported (Antonchuk, et. al. 2002; Boitano, et. al., 2010). For mouse experiments, increasing 

doses of C57BL/6 BM cells (CD45.2+) with B6 BoyJ (CD45.1+) competitor cells were 

transplanted into lethally irradiated (950 cGy) F1 (CD45.2/CD45.1+) recipient mice. For 

human experiments, increasing doses of CD34+ cells were infused into sublethally irradiated 

(300 cGy) NSG mice. For each LDA experiment, mice were transplanted with either of 3 

cell concentrations with the second being half of the first and the third being half of the 

second. Numbers of mice for each dilution are given in Figure Legends. HSC frequency was 

calculated using L-Calc software (StemCell Technologies Inc.) and plotted using ELDA 

software (bioinf.wehi.edu.au/software/elda/). Poisson statistics was used to calculate the p 

value for all LDA analyses.

Colony Assays and Tritiated Thymidine Kill Assay

These were done as reported (Broxmeyer et al., 2012; Mantel et al., 2012). Colonies were 

scored after incubation at 5% O2, 5% CO2 to maximize detectable colony numbers.

Respirometry

Extracellular flux respirometry was done on mouse splenocytes as reported (Mantel, et al., 

2012).

Statistics

Statistical analysis was done using a 2-tailed student t-test, or where indicated by ANOVA, 

or Mann-Whitney.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Exposure to ambient air compromises HSC recovery from bone marrow and 

cord blood.

• HSC numbers are grossly underestimated because of collection in air.

• The decrease is mediated by ROS linked to CypD-p53-MPTP axis, miR210, and 

hif-1α.

• HSC transplantation efficiency is enhanced with cells collected in Cyclosporin 

A
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Figure 1. BM harvest and processing in hypoxia (3%O2) or in ambient air
A) BM was harvested and processed in a hypoxic chamber (3%O2, 5%CO2, N2 balance) or 

ambient air (∼21% O2). Ai) Flow cytometric density dot-plots are representative of 6 

independent experiments. LT-HSC are defined as CD34-CD48-LSK. Aii) Relative 

frequency histograms. Bar indicates CD34 positive or negative staining based on isotype 

control antibody. Aiii) Number of LT-HSCs collected, per 106 BM cells, when harvested 

and processed in air (A) or in the hypoxic chamber (H); mean±SE for 6 independent 

experiments; statistics determined by Mann-Whitney method. B)LT-HSCs, collected from 

BM harvested in hypoxic chamber and divided into two; one was removed from the 

chamber and immediately exposed to air for 60 min (H→A), the other was left in the 

chamber for 60 min (H→H) before further staining and processing. Chart bars are mean±SE 

for 3 independent experiments. C) Length of air exposure on numbers of LT-HSCs, which 

were collected after harvest in hypoxic chamber (zero time) and aliquots exposed to air for 

30, 60, or 90 min before staining and processing (1experiment). Logistically, it was difficult 

to do a time point much less than 30 min. D) Flow cytometric density dot-plots of CD34 and 

CD150 expression in CD48-CD41-LSK cells. With this antibody combination, LT-HSCs are 

defined as CD150+CD34-CD48-CD41-LSK (Oguro, et al., 2013). Density plots represent 2 

similar experiments. Ei) ROS levels in LT-HSC harvested and processed in ambient air 

(A→A) or in hypoxia (H→H) (3 independent harvests on the same day; mean±SD). Eii) 
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ROS levels in CD48-LSK; mean±SD for 3 independent experiments (1 mouse per collection 

per experiment on different days). Fi) Mitochondrial activities, measured by Mitotracker 

Green FM mean fluorescent intensity in CD48-LSK BM cells collected and processed in 

ambient air (A→A) or hypoxia (H→H); mean±SD for 3 independent experiments. Fii) 

Percentage of CD48-LSK cells with hyperpolarized mitochondrial membrane potential using 

JC-1 probe in BM collected and processed in ambient air or hypoxia; mean±SD for 3 

independent experiments. G) Numbers of LT-HSC, Short-term HSC (ST-HSC; 

CD34+CD41-CD48-LSK), or multi-potent progenitors (MPP; CD48-Lin-Sca1-c-kit+); mean

±SD for 6 independent experiments (one mouse per experiment each harvested, processed, 

and analyzed on different days). H) Absolute numbers per femur (upper graphs) and cycling 

status (% in S-phase as determined by high specific activity tritiated thymidine kill assay; 

lower graphs) of HPC for BM cells collected and processed in hypoxia (H→H), or collected 

under hypoxia and placed in air for 60 min. (H → A) and then cultured in hypoxia (5% O2). 

Mean ±SE for 3 mice each from 1 experiment. *p<0.05; **p<0.001. Results were 

reproduced in 4 additional experiments with 3 mice/group each. Ii) Representative flow 

cytometric contour plots of human LT-HSC (Lin-CD34+CD38-CD45RA-CD90+CD49f+ as 

per Notta et al., 2011) from CB collected under hypoxic conditions with half left in hypoxia 

for processing (H→H) and half left in air for 60 min. (H→A). Iii) Number of phenotyped 

human CB-derived HSC per 106 total cells; mean ± SD for 4 independent CB harvests.

See also Figure S1.
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Figure 2. Competitive mouse HSC repopulation, HSC homing, Apoptosis, and CXCR4 
expression
A) Competitive HSC engraftment. Donor cells were CD45.2+, competitors were CD45.1+ 

(competitor cells all collected in air and injected either in hypoxia or air immediately after 

donor cells were injected), and infused into 950 cGy irradiated dual CD45.2+/CD45.1+ F1 

recipients at 150K donor and 150K competitor cells. Ai) BM cells were harvested in 

hypoxia and cells split so that half were processed and injected in hypoxia, and half 

subjected to air for 60 min. prior to processing and injecting in air. Mean ± SE of CD45.2+ 

(donor cell) chimerism (1 experiment) for numbers of mice evaluated. Open circles (hypoxia 

(H)→Air (A)) and closed circles (H→H). Aii) Combined results of 2-3 separate engrafting 

studies as noted in text. Aiii) CRUs calculated from LDA as per Antonchuk, et. al., 2002 

(n=3-4 mice per group at each cell concentration infused for each of two experiments) for 

month 3 peripheral blood and month 7/8 for BM. P value is based on Poisson statistics. B) 

Homing of cells collected in hypoxia, and then left to be processed and injected under 

hypoxia (H→H for input), or collected under hypoxia and then exposed to room air for 60 

minutes before processing and injecting cells in air (H→A for input). Cells were analyzed 

24 hours after injection by removing 2 femurs plus 2 tibias from 10 mice under hypoxia and 

splitting the cells into two, one half which was left at hypoxia for staining and assessment 

(H→H for output) and one half placed into air for 60 min. for staining and assessment 
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(H→A for output). Lin- BM cells were injected and % LSK cells homed (output to input 

LSK) showed no significant differences in any of the groups by AN OVA analysis Ci) 

Representative relative frequency histograms of CXCR4 surface staining intensity in LT-

HSCs. Cii) Mean fluorescence staining intensity of 4 BM harvests (mean ± SD). D) Flow 

cytometric assessment of apoptosis using antibody to activated caspase-3. Data represent 2 

similar experiments.

See also Figure S2.
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Figure 3. MPTP in EPHOSS: effects of cyclosporine A
A) Effects of BM harvest in air in presence of 50μg/ml cyclosporine A (CSA-harvest) or 

DMSO control on CD34 expression levels in CD48-LSK cells. For CSA group, mice used 

for cell collection were injected with CSA (Experimental Procedures). Mice for control 

group were injected with control medium. Representative flow cytometric density dot-plot 

for 3 independent harvests. LT-HSCs are noted in circles. B) Dose-response of CSA on LT-

HSC collection (N=1 expt). Ci) Relative frequency histogram representative of 3 

independent harvests in DMSO or 50ug/ml CSA. Cii) Average LT-HSCs collected after 

DMSO or CSA-harvest (3 independent experiments; mean ±SD). Ciii) Effect of time of air 

exposure on BM harvested in the presence of either DMSO or CSA (1 experiment). D) 

Effects of CSA or DMSO harvest on GM-CSF plus SCF-induced CFU-GM colony 

formation (mean±SD from 6 mice each in a total of 2 experiments). Effects of FK506- (E) or 

carboxyatractylate- (CAT-) (F) harvests shown as a relative frequency histogram from flow 

cytometric data. Data in E and F are representative of 2 independent experiments each with 

similar results. Bar charts are quantitation (mean ± range) for 2 experiments. G) Effect of 

DMSO-, CSA-, or CAT-harvest on ROS levels in CD48-LSK cells (mean of 2 independent 

experiments ± range). Hi) Effect of CSA-harvest, compared to DMSO (control; C)-harvest, 

on HSC engraftment in competitive repopulation transplant assay (mean % CD45.2+ donor 

cell chimerism ±SE for numbers of mice shown at each point. Results for months 1-4, and 8 

for primary mice are for 2 experiments, while that at 1,3 months for secondary mice are for 

1 experiment. Hii) CRUs calculated by LDA analysis respectively at 3 months for peripheral 

blood (PB) and at 8 months for BM (n=3-5 mice per group at each cell concentration infused 

for each of two experiments). P value is based on Poisson statistics.

See also Figures S3 and S4.
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Figure 4. Effect of human CB CSA and mouse BM cyclophilin D (CypD) -/- collections
A) Effect of CSA collection on CB CD34+ cells, LT-HSCs, and MPPs. Results are from 5 

different CB collections. B) CRUs calculated from LDA (n-3-5 mice per group at each cell 

concentration for each of 2 separate CB collections. Bi) Combined results of 2 expts at 2 

months for PB. Bii) Results of one of the CB collections at 3.5 months for BM. Biii) Results 

of the other CB collection at 4.5 months for BM (Bii and Biii results for BM were not 

combined as the percent chimerism for both was largely different precluding averaging the 

results for LDA). Ci) Effect of CypD gene deletion on phenotyped LT-HSC recovery when 

BM is harvested in air (N=7 experiments). Cii) ROS levels in LT-HSC cells harvested from 

5 of the 7 different experiments shown in Ci. D) Recovery of multi-cytokine-stimulated 

CFU-GM, BFU-E, and CFU-GEMM (Average of 6 WT and 10 CypD -/- mice in a total of 2 

experiments expressed as mean ±SE). E) GM-CSF plus SCF-induced CFU-GM colony 

formation (mean ± SE) in BM from same animals as in D. F) Percent PB chimerism of 

CypD -/- BM cell engraftment at limiting dilution analysis for months 1-3 in PB and at 4.5 

months in BM (4-5 mice/group at each cell concentration for 1 expt.). Fii) CRUs as 

calculated for month 2 and 3 PB and month 4.5 BM by LDA for CypD -/- BM cell 

engraftment.

See also Figures S4 and S5.
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Figure 5. Effect of p53, miR210 or hif-1α gene deletion
A) Effect of p53 gene deletion on hypoxic (H→H) and air (H→A) BM harvest on 

phenotyped LT-HSC recovery for independent BM harvests from six p53-/- and three 

littermate control wild type (WT) mice. BM from each mouse was harvested and maintained 

in the hypoxic chamber for 60 min before staining and fixation (H→H) or was exposed to 

air for 60 min before staining and fixation (H→A). Mean LT-HSC per 106 nucleated BM 

cells ± SD for each group. B) Effect of p53 gene deletion on multi-cytokine stimulated 

progenitor cell recovery (left) or cell cycle status (right; high specific activity tritiated 

thymidine kill assay). BM was from the same animals harvested in E and cells were cultured 

in hypoxia (5%O2). C) Phenotyped LT-HSC, ST-HSC, and MPP, recovery for miR210-/- (i), 

or hif-1α-/- (ii) BM. Cells from one femur were collected and processed in air (A) and cells 

from the contralateral femur were collected and processed in hypoxia (H). One of two 

experiments with similar results for (i), and one experiment for (ii). D) HPC recovery from 

miR210-/- (i) or hif-1α -/- (ii) BM harvested and processed in air (A), or hypoxia (H), and 

cultured in hypoxia (5%O2). 1 of 3 reproducible experiments with 3 mice/group for each 

experiment for the miR210 -/- mice in which one femur was collected in air and the 

contralateral femur collected in hypoxia, with one of the other two experiments done in a 

similar manner, and one experiment done with collection in hypoxia and processing in air 
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vs. collection and processing in hypoxia. 1 of 2 reproducible experiments for hif-1α -/- mice 

with harvest in air vs. hypoxia. a=significant (p<0.01) compared to WT A control, b=not 

significant (p>0.05) compared to hif-1α-/- or miR210-/-.
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