1,907 research outputs found

    Phosphorylation and SCF-mediated degradation regulate CREB-H transcription of metabolic targets.

    No full text
    CREB‑H, an endoplasmic reticulum–anchored transcription factor, plays a key role in regulating secretion and in metabolic and inflammatory pathways, but how its activity is modulated remains unclear. We examined processing of the nuclear active form and identified a motif around S87–S90 with homology to DSG-type phosphodegrons. We show that this region is subject to multiple phosphorylations, which regulate CREB-H stability by targeting it to the SCF(Fbw1a) E3 ubiquitin ligase. Data from phosphatase treatment, use of phosophospecific antibody, and substitution of serine residues demonstrate phosphorylation of candidate serines in the region, with the core S87/S90 motif representing a critical determinant promoting proteasome-mediated degradation. Candidate kinases CKII and GSK-3b phosphorylate CREB-H in vitro with specificities for different serines. Prior phosphorylation with GSK-3 at one or more of the adjacent serines substantially increases S87/S90-dependent phosphorylation by CKII. In vivo expression of a dominant-negative Cul1 enhances steady-state levels of CREB‑H, an effect augmented by Fbw1a. CREB-H directly interacts with Fbw1a in a phosphorylation-dependent manner. Finally, mutations within the phosphodegron, when incorporated into the full-length protein, result in increased levels of constitutively cleaved nuclear protein and increased transcription and secretion of a key endogenous target gene, apolipoprotein A IV

    Developing a sentinel monitoring network for Scotland's rivers and lochs

    Get PDF
    • The Scottish Environment Protection Agency’s (SEPA) surveillance monitoring networks for rivers and lochs were established over a decade ago to help assess the state of Scotland’s freshwater environment and detect environmental change. This long-term monitoring is integral in formulating evidence-based policy and evaluating whether land and water management aimed at improving environmental quality is effective. • SEPA and Scottish Government have commissioned this review of the surveillance networks to better understand their national representativeness, optimal size and sampling intensities. • The review also considered new and innovative monitoring technologies, and assessed where these may help SEPA to more cost-effectively assess long-term trends in the environment. • The specific aims of this report are: (1) to assess how well the SEPA river surveillance network represents Scotland’s environment; (2) to identify possible changes in the river surveillance network to improve its representativeness; (3) to estimate the ability of the existing river and loch surveillance networks to detect long-term environmental change, and investigate how this might be affected by changes in sampling regimes; (4) to analyse environmental changes detectable since the inception of the surveillance networks; and (5) to analyse the benefits of adopting new sampling methods

    Classification of fresh edible oils using a coated piezoelectric sensor array-based electronic nose with soft computing approach for pattern recognition

    Get PDF
    An electronic nose based on an array of six bulk acoustic wave polymer-coated piezoelectric quartz (PZQ) sensors with soft computing-based pattern recognition was used for the classi-fication of edible oils. The electronic nose was presented with 346 samples of fresh edible oil headspace volatiles, generated at 45°C. Extra virgin olive (EVO), nonvirgin olive oil (NVO) and sunflower oil (SFO) were used over a period of 30 days. The sensor responses were visualized by plotting the results from principal component analysis (PCA). Classification of edible oils was carried out using fuzzy c-means as well as radial basis function (RBF) neural networks both from a raw data and data after having been preprocessed by fuzzy c-means. The fuzzy c-means results were poor (74%) due to the different cluster sizes. The result of RBF with fuzzy c-means preprocessing was 95% and 99% for raw data input. RBF networks with fuzzy c-means preprocessing provide the advantage of a simple architecture that is quicker to train.</p

    Risk of Foot-and-Mouth Disease Spread Due to Sole Occupancy Authorities and Linked Cattle Holdings

    Get PDF
    Livestock movements in Great Britain are well recorded, have been extensively analysed with respect to their role in disease spread, and have been used in real time to advise governments on the control of infectious diseases. Typically, livestock holdings are treated as distinct entities that must observe movement standstills upon receipt of livestock, and must report livestock movements. However, there are currently two dispensations that can exempt holdings from either observing standstills or reporting movements, namely the Sole Occupancy Authority (SOA) and Cattle Tracing System (CTS) Links, respectively. In this report we have used a combination of data analyses and computational modelling to investigate the usage and potential impact of such linked holdings on the size of a Foot-and-Mouth Disease (FMD) epidemic. Our analyses show that although SOAs are abundant, their dynamics appear relatively stagnant. The number of CTS Links is also abundant, and increasing rapidly. Although most linked holdings are only involved in a single CTS Link, some holdings are involved in numerous links that can be amalgamated to form "CTS Chains" which can be both large and geographically dispersed. Our model predicts that under a worst case scenario of "one infected - all infected", SOAs do pose a risk of increasing the size (in terms of number of infected holdings) of a FMD epidemic, but this increase is mainly due to intra-SOA infection spread events. Furthermore, although SOAs do increase the geographic spread of an epidemic, this increase is predominantly local. Whereas, CTS Chains pose a risk of increasing both the size and the geographical spread of the disease substantially, under a worse case scenario. Our results highlight the need for further investigations into whether CTS Chains are transmission chains, and also investigations into intra-SOA movements and livestock distributions due to the lack of current data

    Rapid measurement of lactate in exhaled breath condensate: biosensor optimisation and in-human proof-of-concept

    Get PDF
    Lactate concentration is of increasing interest as a diagnostic for sepsis, septic shock, and trauma. Compared with the traditional blood sample media, the exhaled breath condensate (EBC) has the advantages of non-invasiveness and higher user acceptance. An amperometric biosensor was developed and its application in EBC lactate detection was investigated in this paper. The sensor was modified with PEDOT:PSS-PB, and two different lactate oxidases (LODs). A rotating disk electrode and Koutecky–Levich analysis were applied for the kinetics analysis and gel optimization. The optimized gel formulation was then tested on disposable screen-printed sensors. The disposable sensors exhibited good performance and presented a high stability for both LOD modifications. Finally, human EBC analysis was conducted from a healthy subject at rest and after 30 min of intense aerobic cycling exercise. The sensor coulometric measurements showed good agreement with fluorometric and triple quadrupole liquid chromatography mass spectrometry reference methods. The EBC lactate concentration increased from 22.5 μM (at rest) to 28.0 μM (after 30 min of cycling) and dropped back to 5.3 μM after 60 min of rest

    Accurate Characterization Of The Peptide Linkage In The Gas Phase: A Joint Quantum-chemical And Rotational Spectroscopy Study Of The Glycine Dipeptide Analogue

    Get PDF
    Accurate structures of aminoacids in the gas phase have been obtained by joint microwave and quantum-chemical investigations. However, the structure and conformational behavior of α\alpha-aminoacids once incorporated into peptide chains are completely different and have not yet been characterized with the same accuracy. To fill this gap, we present here an accurate characterization of the simplest dipeptide analogue (N-acetylglycinamide) involving peptidic bonds. State-of-the-art quantum-chemical computations are complemented by a comprehensive study of the rotational spectrum using a combination of Fourier transform microwave spectroscopy with laser ablation. The coexistence of the C7C_7 and C5C_5 conformers has been proved and energetically as well as spectroscopically characterized. This joint theoretical-experimental investigation demonstrated the feasibility of obtaining accurate structures for flexible small biomolecules, thus paving the route to the elucidation of the inherent behavior of peptides
    • …
    corecore