56 research outputs found

    Recent Advances in Sulfidated Zerovalent Iron for Contaminant Transformation

    Full text link
    2021 marks 10 years since controlled abiotic synthesis of sulfidated nanoscale zerovalent iron (S-nZVI) for use in site remediation and water treatment emerged as an area of active research. It was then expanded to sulfidated microscale ZVI (S-mZVI) and together with S-nZVI, they are collectively referred to as S-(n)ZVI. Heightened interest in S-(n)ZVI stemmed from its significantly higher reactivity to chlorinated solvents and heavy metals. The extremely promising research outcomes during the initial period (2011-2017) led to renewed interest in (n)ZVI-based technologies for water treatment, with an explosion in new research in the last four years (2018-2021) that is building an understanding of the novel and complex role of iron sulfides in enhancing reactivity of (n)ZVI. Numerous studies have focused on exploring different S-(n)ZVI synthesis approaches, and its colloidal, surface, and reactivity (electrochemistry, contaminant selectivity, and corrosion) properties. This review provides a critical overview of the recent milestones in S-(n)ZVI technology development: (i) clear insights into the role of iron sulfides in contaminant transformation and long-term aging, (ii) impact of sulfidation methods and particle characteristics on reactivity, (iii) broader range of treatable contaminants, (iv) synthesis for complete decontamination, (v) ecotoxicity, and (vi) field implementation. In addition, this review discusses major knowledge gaps and future avenues for research opportunities

    Sulfidation enhances stability and mobility of carboxymethyl cellulose stabilized nanoscale zero-valent iron in saturated porous media

    Full text link
    Sulfidation can enhance the reactivity and longevity of nanoscale zero-valent iron (nZVI), but little is known about its effect on the fate and transport of nZVI in saturated porous media. This work compared the stability and mobility of carboxymethyl cellulose (CMC) stabilized nZVI (CMC-nZVI) and sulfidated nZVI (CMC-S-nZVI) particles in saturated porous media. After sulfidation, the hydrodynamic size of CMC-S-nZVI was 100–150 nm larger than CMC-nZVI due to enhanced adsorption of CMC onto the S-nZVI surface, which was facilitated by the bidentate bridging interaction between CMC and the FeSx phase on S-nZVI. Of note is that they had a similar core size and zeta potential. In comparison to CMC-nZVI, CMC-S-nZVI exhibited less physical settling (0–5% vs. 5–73%) and chemical dissolution (2–10% vs. 3–27%) within 55 min under the same ionic conditions (Na+, K+ < 200 mM; Al3+ < 0.75 mM). Column breakthrough experiments showed that both CMC-S-nZVI and CMC-nZVI had relatively high mobility in saturated porous media. However, CMC-S-nZVI exhibited greater breakthrough (C/C0 = 0.57–1.0) and corresponding greater mass recovery rates than the corresponding CMC-nZVI (C/C0 = 0.44–1.0) under most of the experimental conditions (e.g., different ion type and concentration, flow rate, and input concentration). The fitted colloid filtration theory model was in good agreement with experiments. This work suggests that in addition to the significant reactivity and longevity improvements demonstrated in other studies, CMC-S-nZVI is also more mobile than CMC-nZVI suggesting that CMC-S-nZVI has many of the characteristics favorable for field application

    Isotopic and chromatographic fingerprinting of the sources of dissolved organic carbon in a shallow coastal aquifer

    Get PDF
    The terrestrial subsurface is the largest source of freshwater globally. The organic carbon contained within it and processes controlling its concentration remain largely unknown. The global median concentration of dissolved organic carbon (DOC) in groundwater is low compared to surface waters, suggesting significant processing in the subsurface. Yet the processes that remove this DOC in groundwater are not fully understood. The purpose of this study was to investigate the different sources and processes influencing DOC in a shallow anoxic coastal aquifer. Uniquely, this study combines liquid chromatography organic carbon detection with organic (δ13CDOC) carbon isotope geochemical analyses to fingerprint the various DOC sources that influence the concentration, carbon isotopic composition, and character with respect to distance from surface water sources, depth below surface, and inferred groundwater residence time (using 3H activities) in groundwater. It was found that the average groundwater DOC concentration was 5 times higher (5 mg L−1) than the global median concentration and that the concentration doubled with depth at our site, but the chromatographic character did not change significantly. The anoxic saturated conditions of the aquifer limited the rate of organic matter processing, leading to enhanced preservation and storage of the DOC sources from peats and palaeosols contained within the aquifer. All groundwater samples were more aromatic for their molecular weight in comparison to other lakes, rivers and surface marine samples studied. The destabilization or changes in hydrology, whether by anthropogenic or natural processes, could lead to the flux of up to 10 times more unreacted organic carbon from this coastal aquifer compared to deeper inland aquifers

    Sub-lethal radiation enhances anti-tumor immunotherapy in a transgenic mouse model of pancreatic cancer

    Get PDF
    BACKGROUND: It is not uncommon to observe circulating tumor antigen-specific T lymphocytes in cancer patients despite a lack of significant infiltration and destruction of their tumors. Thus, an important goal for tumor immunotherapy is to identify ways to modulate in vivo anti-tumor immunity to achieve clinical efficacy. We investigate this proposition in a spontaneous mouse tumor model, Rip1-Tag2. METHODS: Experimental therapies were carried out in two distinctive trial designs, intended to either intervene in the explosive growth of small tumors, or regress bulky end-stage tumors. Rip1-Tag2 mice received a single transfer of splenocytes from Tag-specific, CD4(+) T cell receptor transgenic mice, a single sub-lethal radiation, or a combination therapy in which the lymphocyte transfer was preceded by the sub-lethal radiation. Tumor burden, the extent of lymphocyte infiltration into solid tumors and host survival were used to assess the efficacy of these therapeutic approaches. RESULTS: In either intervention or regression, the transfer of Tag-specific T cells alone did not result in significant lymphocyte infiltration into solid tumors, not did it affect tumor growth or host survival. In contrast, the combination therapy resulted in significant reduction in tumor burden, increase in lymphocyte infiltration into solid tumors, and extension of survival. CONCLUSIONS: The results indicate that certain types of solid tumors may be intrinsically resistant to infiltration and destruction by tumor-specific T lymphocytes. Our data suggest that such resistance can be disrupted by sub-lethal radiation. The combinatorial approach presented here merits consideration in the design of clinical trials aimed to achieve T cell-mediated anti-tumor immunity

    Repetition and severity of suicide attempts across the life cycle: a comparison by age group between suicide victims and controls with severe depression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Suicide attempts have been shown to be less common in older age groups, with repeated attempts generally being more common in younger age groups and severe attempts in older age groups. Consistently, most studies have shown an increased suicide risk after attempts in older age. However, little is known about the predictive value of age on repeated and severe suicide attempts for accomplished suicide. The aim of the present study was to investigate the reduced incidence for initial, repeated, or severe suicide attempts with age in suicide victims and controls by gender.</p> <p>Methods</p> <p>The records of 100 suicide victims and matched controls with severe depression admitted to the Department of Psychiatry, Lund University Hospital, Sweden between 1956 and 1969, were evaluated and the subjects were monitored up to 2006. The occurrence of suicide attempts (first, repeated, or severe, by age group) was analysed for suicide victims and controls, with gender taken into consideration.</p> <p>Results</p> <p>There was a reduced risk for an initial suicide attempt by older age in females (suicide victims and controls) and male controls (but not suicide victims). The risk for repeated suicide attempts appeared to be reduced in the older age groups in female controls as compared to female suicide victims. The risk for severe suicide attempts seemed reduced in the older age groups in female suicide victims. This risk was also reduced in male controls and in male controls compared to male suicide victims.</p> <p>Conclusion</p> <p>In the older age groups repeated attempts appeared to be predictive for suicide in women and severe attempts predictive in men.</p

    MicroRNA Expression Is Down-Regulated and Reorganized in Prefrontal Cortex of Depressed Suicide Subjects

    Get PDF
    <div><h3>Background</h3><p>Recent studies suggest that alterations in expression of genes, including those which regulate neural and structural plasticity, may be crucial in the pathogenesis of depression. MicroRNAs (miRNAs) are newly discovered regulators of gene expression that have recently been implicated in a variety of human diseases, including neuropsychiatric diseases.</p> <h3>Methodology/Principal Findings</h3><p>The present study was undertaken to examine whether the miRNA network is altered in the brain of depressed suicide subjects. Expression of miRNAs was measured in prefrontal cortex (Brodmann Area 9) of antidepressant-free depressed suicide (n = 18) and well-matched non-psychiatric control subjects (n = 17) using multiplex RT-PCR plates. We found that overall miRNA expression was significantly and globally down-regulated in prefrontal cortex of depressed suicide subjects. Using individual tests of statistical significance, 21 miRNAs were significantly decreased at p = 0.05 or better. Many of the down-regulated miRNAs were encoded at nearby chromosomal loci, shared motifs within the 5′-seeds, and shared putative mRNA targets, several of which have been implicated in depression. In addition, a set of 29 miRNAs, whose expression was not pairwise correlated in the normal controls, showed a high degree of co-regulation across individuals in the depressed suicide group.</p> <h3>Conclusions/Significance</h3><p>The findings show widespread changes in miRNA expression that are likely to participate in pathogenesis of major depression and/or suicide. Further studies are needed to identify whether the miRNA changes lead to altered expression of prefrontal cortex mRNAs, either directly (by acting as miRNA targets) or indirectly (e.g., by affecting transcription factors).</p> </div

    Deep sequencing analysis of the developing mouse brain reveals a novel microRNA

    Get PDF
    Extent: 15p.Background: MicroRNAs (miRNAs) are small non-coding RNAs that can exert multilevel inhibition/repression at a post-transcriptional or protein synthesis level during disease or development. Characterisation of miRNAs in adult mammalian brains by deep sequencing has been reported previously. However, to date, no small RNA profiling of the developing brain has been undertaken using this method. We have performed deep sequencing and small RNA analysis of a developing (E15.5) mouse brain. Results: We identified the expression of 294 known miRNAs in the E15.5 developing mouse brain, which were mostly represented by let-7 family and other brain-specific miRNAs such as miR-9 and miR-124. We also discovered 4 putative 22-23 nt miRNAs: mm_br_e15_1181, mm_br_e15_279920, mm_br_e15_96719 and mm_br_e15_294354 each with a 70-76 nt predicted pre-miRNA. We validated the 4 putative miRNAs and further characterised one of them, mm_br_e15_1181, throughout embryogenesis. Mm_br_e15_1181 biogenesis was Dicer1-dependent and was expressed in E3.5 blastocysts and E7 whole embryos. Embryo-wide expression patterns were observed at E9.5 and E11.5 followed by a near complete loss of expression by E13.5, with expression restricted to a specialised layer of cells within the developing and early postnatal brain. Mm_br_e15_1181 was upregulated during neurodifferentiation of P19 teratocarcinoma cells. This novel miRNA has been identified as miR-3099. Conclusions: We have generated and analysed the first deep sequencing dataset of small RNA sequences of the developing mouse brain. The analysis revealed a novel miRNA, miR-3099, with potential regulatory effects on early embryogenesis, and involvement in neuronal cell differentiation/function in the brain during late embryonic and early neonatal development.King-Hwa Ling, Peter J Brautigan, Christopher N Hahn, Tasman Daish, John R Rayner, Pike-See Cheah, Joy M Raison, Sandra Piltz Jeffrey R Mann, Deidre M Mattiske, Paul Q Thomas, David L Adelson and Hamish S Scot

    An Animal Model of Emotional Blunting in Schizophrenia

    Get PDF
    Schizophrenia is often associated with emotional blunting—the diminished ability to respond to emotionally salient stimuli—particularly those stimuli representative of negative emotional states, such as fear. This disturbance may stem from dysfunction of the amygdala, a brain region involved in fear processing. The present article describes a novel animal model of emotional blunting in schizophrenia. This model involves interfering with normal fear processing (classical conditioning) in rats by means of acute ketamine administration. We confirm, in a series of experiments comprised of cFos staining, behavioral analysis and neurochemical determinations, that ketamine interferes with the behavioral expression of fear and with normal fear processing in the amygdala and related brain regions. We further show that the atypical antipsychotic drug clozapine, but not the typical antipsychotic haloperidol nor an experimental glutamate receptor 2/3 agonist, inhibits ketamine's effects and retains normal fear processing in the amygdala at a neurochemical level, despite the observation that fear-related behavior is still inhibited due to ketamine administration. Our results suggest that the relative resistance of emotional blunting to drug treatment may be partially due to an inability of conventional therapies to target the multiple anatomical and functional brain systems involved in emotional processing. A conceptual model reconciling our findings in terms of neurochemistry and behavior is postulated and discussed

    Pseudomonas aeruginosa Population Structure Revisited

    Get PDF
    At present there are strong indications that Pseudomonas aeruginosa exhibits an epidemic population structure; clinical isolates are indistinguishable from environmental isolates, and they do not exhibit a specific (disease) habitat selection. However, some important issues, such as the worldwide emergence of highly transmissible P. aeruginosa clones among cystic fibrosis (CF) patients and the spread and persistence of multidrug resistant (MDR) strains in hospital wards with high antibiotic pressure, remain contentious. To further investigate the population structure of P. aeruginosa, eight parameters were analyzed and combined for 328 unrelated isolates, collected over the last 125 years from 69 localities in 30 countries on five continents, from diverse clinical (human and animal) and environmental habitats. The analysed parameters were: i) O serotype, ii) Fluorescent Amplified-Fragment Length Polymorphism (FALFP) pattern, nucleotide sequences of outer membrane protein genes, iii) oprI, iv) oprL, v) oprD, vi) pyoverdine receptor gene profile (fpvA type and fpvB prevalence), and prevalence of vii) exoenzyme genes exoS and exoU and viii) group I pilin glycosyltransferase gene tfpO. These traits were combined and analysed using biological data analysis software and visualized in the form of a minimum spanning tree (MST). We revealed a network of relationships between all analyzed parameters and non-congruence between experiments. At the same time we observed several conserved clones, characterized by an almost identical data set. These observations confirm the nonclonal epidemic population structure of P. aeruginosa, a superficially clonal structure with frequent recombinations, in which occasionally highly successful epidemic clones arise. One of these clones is the renown and widespread MDR serotype O12 clone. On the other hand, we found no evidence for a widespread CF transmissible clone. All but one of the 43 analysed CF strains belonged to a ubiquitous P. aeruginosa “core lineage” and typically exhibited the exoS+/exoU− genotype and group B oprL and oprD alleles. This is to our knowledge the first report of an MST analysis conducted on a polyphasic data set
    corecore