9,239 research outputs found

    Lithospheric failure on Venus

    Get PDF
    We develop a predictive model which has the ability to explain a postulated style of episodic plate tectonics on Venus, through the periodic occurrence of lithospheric subduction events. Present-day incipient subduction zones are associated with the existence of arcuate trenches on the Venusian lithosphere. These trenches resemble terrestrial subduction zones, and occur at the rim of coronae, uplift features thought to be due to deep-mantle convective plumes. The model we adopt represents the lithosphere as the thermal boundary layer which lies above a convective plume. We assume a temperature-dependent nonlinear viscoelastic rheology, and we assume a stress-based criterion for plastic yield. In developing this latter criterion, we are led to a re-interpretation of the strength envelope which is commonly used in analysing lithospheric stress, and we propose that the plastic yield strength has meaning (and is finite) below the lithosphere, using behaviour in the Earth as our 'laboratory' justification for this view. An inferred yield stress on the Earth is ca. 300 bar (30 MPa). Our model then shows that a thickening lithosphere becomes progressively more fluid as the stresses induced by the buoyant convective plume become large. Failure occurs when the effective lithosphere viscosity becomes equal to that of the underlying mantle. We show that reasonable expected values of yield stress in the range 100-200 bar (10-20 MPa) for Venusian mantle rocks are consistent within the framework of the model with radii of coronal trenches in the range 100-1200 km, and with the approximate time (200-800 Myr) which they may take to develop

    Six months of mass outflow and inclined rings in the ejecta of V1494 Aql

    Get PDF
    V1494 Aql was a very fast nova which reached a visual maximum of mv≃ 4.0 by the end of 1999 December 3. We report observations from 4 to 284 d after discovery, including submillimetre- and centimetre-band fluxes, a single MERLIN image and optical spectroscopy in the 410 to 700 nm range. The extent of the radio continuum emission is consistent with a recent lower distance estimate of 1.6 kpc. We conclude that the optical and radio emission arises from the same expanding ejecta. We show that these observations are not consistent with simple kinematical spherical shell models used in the past to explain the rise and fall of the radio flux density in these objects. The resolved remnant structure is consistent with an inclined ring of enhanced density within the ejecta. Optical spectroscopy indicates likely continued mass ejection for over 195 d, with the material becoming optically thin in the visible sometime between 195 and 285 d after outburst

    Experimental feedback control of quantum systems using weak measurements

    Get PDF
    A goal of the emerging field of quantum control is to develop methods for quantum technologies to function robustly in the presence of noise. Central issues are the fundamental limitations on the available information about quantum systems and the disturbance they suffer in the process of measurement. In the context of a simple quantum control scenario--the stabilization of non-orthogonal states of a qubit against dephasing--we experimentally explore the use of weak measurements in feedback control. We find that, despite the intrinsic difficultly of implementing them, weak measurements allow us to control the qubit better in practice than is even theoretically possible without them. Our work shows that these more general quantum measurements can play an important role for feedback control of quantum systems.Comment: 4 pages, 3 figures. v2 Added extra citation, journal reference and DOI. Minor typographic correction

    A-STAR: The All-Sky Transient Astrophysics Reporter

    Full text link
    The small mission A-STAR (All-Sky Transient Astrophysics Reporter) aims to locate the X-ray counterparts to ALIGO and other gravitational wave detector sources, to study the poorly-understood low luminosity gamma-ray bursts, and to find a wide variety of transient high-energy source types, A-STAR will survey the entire available sky twice per 24 hours. The payload consists of a coded mask instrument, Owl, operating in the novel low energy band 4-150 keV, and a sensitive wide-field focussing soft X-ray instrument, Lobster, working over 0.15-5 keV. A-STAR will trigger on ~100 GRBs/yr, rapidly distributing their locations.Comment: Accepted for the European Astronomical Society Publications Series: Proceedings of the Fall 2012 Gamma-Ray Burst Symposium held in Marbella, Spain, 8-12 Oct 201

    Torque-onset determination: Unintended consequences of the threshold method.

    Get PDF
    BACKGROUND: Compared with visual torque-onset-detection (TOD), threshold-based TOD produces onset bias, which increases with lower torques or rates of torque development (RTD). PURPOSE: To compare the effects of differential TOD-bias on common contractile parameters in two torque-disparate groups. METHODS: Fifteen boys and 12 men performed maximal, explosive, isometric knee-extensions. Torque and EMG were recorded for each contraction. Best contractions were selected by peak torque (MVC) and peak RTD. Visual-TOD-based torque-time traces, electromechanical delays (EMD), and times to peak RTD (tRTD) were compared with corresponding data derived from fixed 4-Nm- and relative 5%MVC-thresholds. RESULTS: The 5%MVC TOD-biases were similar for boys and men, but the corresponding 4-Nm-based biases were markedly different (40.3±14.1 vs. 18.4±7.1ms, respectively; p<0.001). Boys-men EMD differences were most affected, increasing from 5.0ms (visual) to 26.9ms (4Nm; p<0.01). Men's visually-based torque kinetics tended to be faster than the boys' (NS), but the 4-Nm-based kinetics erroneously depicted the boys as being much faster to any given %MVC (p<0.001). CONCLUSIONS: When comparing contractile properties of dissimilar groups, e.g., children vs. adults, threshold-based TOD methods can misrepresent reality and lead to erroneous conclusions. Relative-thresholds (e.g., 5% MVC) still introduce error, but group-comparisons are not confounded

    Swift observations of the 2006 outburst of the recurrent nova RS Ophiuchi: II. 1D hydrodynamical models of wind driven shocks

    Full text link
    Following the early Swift X-ray observations of the latest outburst of the recurrent nova RS Ophiuchi in February 2006 (Paper I), we present new 1D hydrodynamical models of the system which take into account all three phases of the remnant evolution. The models suggest a novel way of modelling the system by treating the outburst as a sudden increase then decrease in wind mass-loss rate and velocity. The differences between this wind model and previous Primakoff-type simulations are described. A more complex structure, even in 1D, is revealed through the presence of both forward and reverse shocks, with a separating contact discontinuity. The effects of radiative cooling are investigated and key outburst parameters such as mass-loss rate, ejecta velocity and mass are varied. The shock velocities as a function of time are compared to the ones derived in Paper I. We show how the manner in which the matter is ejected controls the evolution of the shock and that for a well-cooled remnant, the shock deceleration rate depends on the amount of energy that is radiated away.Comment: 9 pages, 5 figure

    Inference of oxygen vacancies in hydrothermal Na0.5Bi0.5TiO3

    Get PDF
    A high-resolution x-ray powder diffraction study has been made of pseudo-rhombohedral and tetragonal phases in Na0.5Bi0.5TiO3 (NBT), produced via hydrothermal and conventional solidstate methods. Hydrothermal NBT exhibits significantly greater structural distortion at room temperature than solid-state NBT. Peak widths and superstructure peak intensities show a phase transition at 305 C, with trends suggesting that the structure tends towards cubic symmetry at this temperature. Structural refinements indicate that the transition occurs via a phase coexistence region with no clear intermediate phase. Piezoelectric data show evidence of polarisation pinning in hydrothermal NBT, interpreted as a high proportion of oxygen vacancies

    Van Allen Probes show that the inner radiation zone contains no MeV electrons: ECT/MagEIS data

    Get PDF
    Abstract We present Van Allen Probe observations of electrons in the inner radiation zone. The measurements were made by the Energetic Particle, Composition, and Thermal Plasma/Magnetic Electron Ion Spectrometer (MagEIS) sensors that were designed to measure electrons with the ability to remove unwanted signals from penetrating protons, providing clean measurements. No electrons \u3e900 keV were observed with equatorial fluxes above background (i.e., \u3e0.1 el/(cm2 s sr keV)) in the inner zone. The observed fluxes are compared to the AE9 model and CRRES observations. Electron fluxes \u3c200 keV exceeded the AE9 model 50% fluxes and were lower than the higher-energy model fluxes. Phase space density radial profiles for 1.3 ≤ L* \u3c 2.5 had mostly positive gradients except near L*~2.1, where the profiles for μ = 20–30 MeV/G were flat or slightly peaked. The major result is that MagEIS data do not show the presence of significant fluxes of MeV electrons in the inner zone while current radiation belt models and previous publications do

    Fermi surface of the colossal magnetoresistance perovskite La_{0.7}Sr_{0.3}MnO_{3}

    Full text link
    Materials that exhibit colossal magnetoresistance (CMR) are currently the focus of an intense research effort, driven by the technological applications that their sensitivity lends them to. Using the angular correlation of photons from electron-positron annihilation, we present a first glimpse of the Fermi surface of a material that exhibits CMR, supported by ``virtual crystal'' electronic structure calculations. The Fermi surface is shown to be sufficiently cubic in nature that it is likely to support nesting.Comment: 5 pages, 5 PS figure
    corecore