1,114 research outputs found

    Water Delivery and Giant Impacts in the 'Grand Tack' Scenario

    Get PDF
    A new model for terrestrial planet formation (Hansen 2009, Walsh et al. 2011) has explored accretion in a truncated protoplanetary disk, and found that such a configuration is able to reproduce the distribution of mass among the planets in the Solar System, especially the Earth/Mars mass ratio, which earlier simulations have generally not been able to match. Walsh et al. tested a possible mechanism to truncate the disk--a two-stage, inward-then-outward migration of Jupiter and Saturn, as found in numerous hydrodynamical simulations of giant planet formation. In addition to truncating the disk and producing a more realistic Earth/Mars mass ratio, the migration of the giant planets also populates the asteroid belt with two distinct populations of bodies--the inner belt is filled by bodies originating inside of 3 AU, and the outer belt is filled with bodies originating from between and beyond the giant planets (which are hereafter referred to as `primitive' bodies). We find here that the planets will accrete on order 1-2% of their total mass from primitive planetesimals scattered onto planet-crossing orbits during the formation of the planets. For an assumed value of 10% for the water mass fraction of the primitive planetesimals, this model delivers a total amount of water comparable to that estimated to be on the Earth today. While the radial distribution of the planetary masses and the dynamical excitation of their orbits are a good match to the observed system, we find that the last giant impact is typically earlier than 20 Myr, and a substantial amount of mass is accreted after that event. However, 5 of the 27 planets larger than half an Earth mass formed in all simulations do experience large late impacts and subsequent accretion consistent with the dating of the Moon-forming impact and the estimated amount of mass accreted by Earth following that event

    Task-level control for networked telerobotics

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1996.Includes bibliographical references (p. 83-85).by Kevin M. O'Brien.M.S

    LMC X-1: A New Spectral Analysis of the O-star in the binary and surrounding nebula

    Get PDF
    We provide new observations of the LMC X-1 O star and its extended nebula structure using spectroscopic data from VLT/UVES as well as Hα\alpha imaging from the Wide Field Imager on the Max Planck Gesellschaft / European Southern Observatory 2.2m telescope and ATCA imaging of the 2.1 GHz radio continuum. This nebula is one of the few known to be energized by an X-ray binary. We use a new spectrum extraction technique that is superior to other methods to obtain both radial velocities and fluxes. This provides an updated spatial velocity of 21.0 ± 4.8\simeq 21.0~\pm~4.8 km s1^{-1} for the O star. The slit encompasses both the photo-ionized and shock-ionized regions of the nebula. The imaging shows a clear arc-like structure reminiscent of a wind bow shock in between the ionization cone and shock-ionized nebula. The observed structure can be fit well by the parabolic shape of a wind bow shock. If an interpretation of a wind bow shock system is valid, we investigate the N159-O1 star cluster as a potential parent of the system, suggesting a progenitor mass of 60\sim 60 M_{\odot} for the black hole. We further note that the radio emission could be non-thermal emission from the wind bow shock, or synchrotron emission associated with the jet inflated nebula. For both wind and jet-powered origins, this would represent one of the first radio detections of such a structure.Comment: 7 Figures, 4 Table

    A low mass for Mars from Jupiter's early gas-driven migration

    Full text link
    Jupiter and Saturn formed in a few million years (Haisch et al. 2001) from a gas-dominated protoplanetary disk, and were susceptible to gas-driven migration of their orbits on timescales of only ~100,000 years (Armitage 2007). Hydrodynamic simulations show that these giant planets can undergo a two-stage, inward-then-outward, migration (Masset & Snellgrove 2001, Morbidelli & Crida 2007, Pierens & Nelson 2008). The terrestrial planets finished accreting much later (Klein et al. 2009), and their characteristics, including Mars' small mass, are best reproduced by starting from a planetesimal disk with an outer edge at about one astronomical unit from the Sun (Wetherill 1978, Hansen 2009) (1 AU is the Earth-Sun distance). Here we report simulations of the early Solar System that show how the inward migration of Jupiter to 1.5 AU, and its subsequent outward migration, lead to a planetesimal disk truncated at 1 AU; the terrestrial planets then form from this disk over the next 30-50 million years, with an Earth/Mars mass ratio consistent with observations. Scattering by Jupiter initially empties but then repopulates the asteroid belt, with inner-belt bodies originating between 1 and 3 AU and outer-belt bodies originating between and beyond the giant planets. This explains the significant compositional differences across the asteroid belt. The key aspect missing from previous models of terrestrial planet formation is the substantial radial migration of the giant planets, which suggests that their behaviour is more similar to that inferred for extrasolar planets than previously thought.Comment: 12 pages, 4 figures + Supplementary Material 46 pages, 10 figure

    RydIQule: A Graph-based Paradigm for Modelling Rydberg and Atomic Systems

    Full text link
    We describe a numerical technique and accompanying open-source Python software package called RydIQule. RydIQule uses a directional graph, relying on adjacency matrices and path-finding to generate a Hamiltonian for multi-level atomic systems. RydIQule then constructs semi-classical equations of motion (Bloch equations) into a tensor which can store an entire simulation consisting of varied system parameters. Using this framework, RydIQule returns solutions significantly faster than typical for interpreted programming languages. RydIQule extends beyond the capabilities of currently-available tools, facilitating rapid development in atomic and Rydberg spectroscopy. To demonstrate its utility, we use RydIQule to simulate a Doppler-broadened Rydberg atomic sensor that simultaneously demodulates five rf tones spanning from 1.7 to 116 GHz. Using RydIQule, this simulation can be solved in several hours on a commercial off-the-shelf desktop computer.Comment: 5 pages, 3 figure

    Increased risk for other cancers in individuals with Ewing sarcoma and their relatives.

    Get PDF
    BackgroundThere are few reports of the association of other cancers with Ewing sarcoma in patients and their relatives. We use a resource combining statewide genealogy and cancer reporting to provide unbiased risks.MethodsUsing a combined genealogy of 2.3 million Utah individuals and the Utah Cancer Registry (UCR), relative risks (RRs) for cancers of other sites were estimated in 143 Ewing sarcoma patients using a Cox proportional hazards model with matched controls; however, risks in relatives were estimated using internal cohort-specific cancer rates in first-, second-, and third-degree relatives.ResultsCancers of three sites (breast, brain, complex genotype/karyotype sarcoma) were observed in excess in Ewing sarcoma patients. No Ewing sarcoma patients were identified among first-, second-, or third-degree relatives of Ewing sarcoma patients. Significantly increased risk for brain, lung/bronchus, female genital, and prostate cancer was observed in first-degree relatives. Significantly increased risks were observed in second-degree relatives for breast cancer, nonmelanoma eye cancer, malignant peripheral nerve sheath cancer, non-Hodgkin lymphoma, and translocation sarcomas. Significantly increased risks for stomach cancer, prostate cancer, and acute lymphocytic leukemia were observed in third-degree relatives.ConclusionsThis analysis of risk for cancer among Ewing sarcoma patients and their relatives indicates evidence for some increased cancer predisposition in this population which can be used to individualize consideration of potential treatment of patients and screening of patients and relatives

    American Ginseng Modifies 137Cs-Induced DNA Damage and Oxidative Stress in Human Lymphocytes

    Get PDF
    The multifold bioactive medicinal properties of ginseng have been closely linked to its antioxidative ability, which is related to its ginsenoside content. Since the key mechanism of radiation-induced cell death and tissue damage is the generation of reactive oxygen species (ROS) that attack cellular DNA, this study focuses on the impact of a standardized North American ginseng extract (NAGE) on 137Cs-induced oxidative stress in human peripheral lymphocytes (PBL) obtained from 10 healthy individuals (6M/4F), 42.7 ± 4.6 years of age. At two different time points (0 h and 24 h before irradiation), we applied NAGE (250 - 1000 µg ml-1) to mononuclear cell cultures for cytokinesisblock micronuclei (MN) assay and determination of the state of oxidative stress in PBL. We found that at both time points, NAGE significantly reduced the MN yields in PBL after irradiation (1 and 2 Gy) in a concentration-dependent manner (P<0.001). Compared with radiation alone, the maximum reduction rate of MN yield were 51.1% and 49.1% after 1 Gy and 2 Gy exposures, respectively. We also found that before irradiation the presence of NAGE in the culture medium resulted in a significant increased intracellular total antioxidant capacity (TAC) in PBL. At both time points, the increment of 137Cs-induced MN yields in PBL was positively correlated with the increment of intracellular ROS production (R = 0.6 - 0.7, P = 0.002), but negatively correlated with the reduction of TAC levels (R = -0.4 - 0.5, P = 0.02 - 0.004). However, the presence of NAGE in the culture medium significantly increased the TAC levels, while concomitantly decreasing both ROS production and MN yields in PBL (P<0.001). Our findings that NAGE is effective in protecting human PBL against radiation-induced oxidative stress should encourage further in vivo study of dietary supplementation with NAGE as an effective natural radiation countermeasure. Originally published Open Nuclear Medicine Journal Vol 1 No. 1, 2009
    corecore