16,086 research outputs found
Theories of Technological Progress and the British Textile Industry from Kay to Cartwright
Editada en la Fundación Empresa PúblicaLa industria textil británica continúa en el centro del debate sobre la revolución industrial. Las innovaciones técnicas en el período produjeron una aceleración extraordinaria del crecimiento del output y una considerable reducción de los precios de los tejidos. En este trabajo presentamos un estudio de la comunidad de los inventores responsables de la transformación tecnológica, lo que nos permite alcanzar una serie de conclusiones nuevas sobre el ritmo y dirección de la actividad innovadora durante la revolución industrialThe cotton textile industry remains central to all accounts of the first industrial revolution. Innovations in this period precipitated an extraordinary acceleration in the growth of output and a steep decline in the cost of producing all varieties of cloth. In this paper we outline an explanation through an analysis of the community of inventors responsible for the technological transformation, which enables us to offer some generalizations of the pace and pattern of the inventive activity in this period.Publicad
Spectral evolution and the onset of the X-ray GRB afterglow
Based on light curves from the Swift Burst Analyser, we investigate whether a
`dip' feature commonly seen in the early-time hardness ratios of Swift-XRT data
could arise from the juxtaposition of the decaying prompt emission and rising
afterglow. We are able to model the dip as such a feature, assuming the
afterglow rises as predicted by Sari & Piran (1999). Using this model we
measure the initial bulk Lorentz factor of the fireball. For a sample of 23
GRBs we find a median value of Gamma_0=225, assuming a constant-density
circumburst medium; or Gamma_0=93 if we assume a wind-like medium.Comment: 4 pages, 3 figures. To appear in the proceedings of GRB 2010,
Annapolis November 2010. (AIP Conference proceedings
Majorana-based fermionic quantum computation
Because Majorana zero modes store quantum information non-locally, they are
protected from noise, and have been proposed as a building block for a quantum
computer. We show how to use the same protection from noise to implement
universal fermionic quantum computation. Our architecture requires only two
Majoranas to encode a fermionic quantum degree of freedom, compared to
alternative implementations which require a minimum of four Majoranas for a
spin quantum degree of freedom. The fermionic degrees of freedom support both
unitary coupled cluster variational quantum eigensolver and quantum phase
estimation algorithms, proposed for quantum chemistry simulations. Because we
avoid the Jordan-Wigner transformation, our scheme has a lower overhead for
implementing both of these algorithms, and the simulation of Trotterized
Hubbard Hamiltonian in time per unitary step. We finally
demonstrate magic state distillation in our fermionic architecture, giving a
universal set of topologically protected fermionic quantum gates.Comment: 4 pages + 4 page appendix, 4 figures, 2 table
Optical and X-ray Variability in The Least Luminous AGN, NGC4395
We report the detection of optical and X-ray variability in the least
luminous known Seyfert galaxy, NGC4395. The featureless continuum changed by a
factor of 2 in 6 months, which is typical of more luminous AGN. The largest
variation was seen at shorter wavelengths, so that the spectrum becomes
`harder' during higher activity states. In a one week optical broad band
monitoring program, a 20% change was seen between successive nights. In a 1
month period the spectral shape changed from a power law with spectral index
alpha ~0 (characteristic of quasars) to a spectral index alpha ~2 (as observed
in other dwarf AGN). ROSAT HRI and PSPC archive data show a variable X-ray
source coincident with the galactic nucleus. A change in X-ray flux by a factor
\~2 in 15 days has been observed. When compared with more luminous AGN, NGC4395
appears to be very X-ray quiet. The hardness ratio obtained from the PSPC data
suggests that the spectrum could be absorbed. We also report the discovery of
weak CaIIK absorption, suggesting the presence of a young stellar cluster
providing of the order of 10% of the blue light. Using HST UV archive data,
together with the optical and X-ray observations, we examine the spectral
energy distribution for NGC4395 and discuss the physical conditions implied by
the nuclear activity under the standard AGN model. The observations can be
explained by either an accreting massive black hole emitting at about 10^(-3)
L_(Edd) or by a single old compact SNR with an age of 50 to 500 yr generated by
a small nuclear starburst.Comment: 19 pages, 9 figures, to appear in MNRA
An XMM-Newton observation of the Narrow Line Seyfert 1 Galaxy, Markarian 896
XMM-Newton observations of the NLS1 Markarian 896 are presented. Over the
2-10 keV band, an iron emission line, close to 6.4 keV, is seen. The line is
just resolved and has an equivalent width of ~170 eV. The broad-band spectrum
is well modelled by a power law slope of gamma ~ 2.03, together with two
blackbody components to fit the soft X-ray excess. Using a more physical
two-temperature Comptonisation model, a good fit is obtained for an input
photon distribution of kT ~ 60eV and Comptonising electron temperatures of ~0.3
and 200 keV. The soft excess cannot be explained purely through the
reprocessing of a hard X-ray continuum by an ionised disc reflector.Comment: 6 pages, 4 figures, accepted by MNRA
Improving wafer-scale Josephson junction resistance variation in superconducting quantum coherent circuits
Quantum bits, or qubits, are an example of coherent circuits envisioned for
next-generation computers and detectors. A robust superconducting qubit with a
coherent lifetime of (100 s) is the transmon: a Josephson junction
functioning as a non-linear inductor shunted with a capacitor to form an
anharmonic oscillator. In a complex device with many such transmons, precise
control over each qubit frequency is often required, and thus variations of the
junction area and tunnel barrier thickness must be sufficiently minimized to
achieve optimal performance while avoiding spectral overlap between neighboring
circuits. Simply transplanting our recipe optimized for single, stand-alone
devices to wafer-scale (producing 64, 1x1 cm dies from a 150 mm wafer)
initially resulted in global drifts in room-temperature tunneling resistance of
30%. Inferring a critical current variation from this
resistance distribution, we present an optimized process developed from a
systematic 38 wafer study that results in 3.5% relative standard deviation
(RSD) in critical current () for 3000 Josephson junctions (both single-junctions and
asymmetric SQUIDs) across an area of 49 cm. Looking within a 1x1 cm moving
window across the substrate gives an estimate of the variation characteristic
of a given qubit chip. Our best process, utilizing ultrasonically assisted
development, uniform ashing, and dynamic oxidation has shown = 1.8% within 1x1 cm, on average,
with a few 1x1 cm areas having 1.0% (equivalent to 0.5%). Such stability would drastically improve the yield of
multi-junction chips with strict critical current requirements.Comment: 10 pages, 4 figures. Revision includes supplementary materia
Building the Terrestrial Planets: Constrained Accretion in the Inner Solar System
To date, no accretion model has succeeded in reproducing all observed
constraints in the inner Solar System. These constraints include 1) the orbits,
in particular the small eccentricities, and 2) the masses of the terrestrial
planets -- Mars' relatively small mass in particular has not been adequately
reproduced in previous simulations; 3) the formation timescales of Earth and
Mars, as interpreted from Hf/W isotopes; 4) the bulk structure of the asteroid
belt, in particular the lack of an imprint of planetary embryo-sized objects;
and 5) Earth's relatively large water content, assuming that it was delivered
in the form of water-rich primitive asteroidal material. Here we present
results of 40 high-resolution (N=1000-2000) dynamical simulations of late-stage
planetary accretion with the goal of reproducing these constraints, although
neglecting the planet Mercury. We assume that Jupiter and Saturn are
fully-formed at the start of each simulation, and test orbital configurations
that are both consistent with and contrary to the "Nice model." We find that a
configuration with Jupiter and Saturn on circular orbits forms low-eccentricity
terrestrial planets and a water-rich Earth on the correct timescale, but Mars'
mass is too large by a factor of 5-10 and embryos are often stranded in the
asteroid belt. A configuration with Jupiter and Saturn in their current
locations but with slightly higher initial eccentricities (e = 0.07-0.1)
produces a small Mars, an embryo-free asteroid belt, and a reasonable Earth
analog but rarely allows water delivery to Earth. None of the configurations we
tested reproduced all the observed constraints. (abridged)Comment: Accepted to Icarus. 21 pages, 12 figures, 5 tables in emulateapj
format. Figures 3 and 4 degraded. For full-resolution see
http://casa.colorado.edu/~raymonsn/ms_emulateapj.pd
Broadband modelling of short gamma-ray bursts with energy injection from magnetar spin-down and its implications for radio detectability
The magnetar model has been proposed to explain the apparent energy injection
in the X-ray light curves of short gamma-ray bursts (SGRBs), but its
implications across the full broadband spectrum are not well explored. We
investigate the broadband modelling of four SGRBs with evidence for energy
injection in their X-ray light curves, applying a physically motivated model in
which a newly formed magnetar injects energy into a forward shock as it loses
angular momentum along open field lines. By performing an order of magnitude
search for the underlying physical parameters in the blast wave, we constrain
the characteristic break frequencies of the synchrotron spectrum against their
manifestations in the available multi-wavelength observations for each burst.
The application of the magnetar energy injection profile restricts the
successful matches to a limited family of models that are self-consistent
within the magnetic dipole spin-down framework.We produce synthetic light
curves that describe how the radio signatures of these SGRBs ought to have
looked given the restrictions imposed by the available data, and discuss the
detectability of these signatures with present-day and near-future radio
telescopes. Our results show that both the Atacama Large Millimetre Array and
the upgraded Very Large Array are now sensitive enough to detect the radio
signature within two weeks of trigger in most SGRBs, assuming our sample is
representative of the population as a whole. We also find that the upcoming
Square Kilometre Array will be sensitive to depths greater than those of our
lower limit predictions.Comment: 15 pages, 4 figures, 6 tables, accepted for publication in MNRA
- …