12,761 research outputs found

    Trends in Fathers' Contribution to Housework and Childcare under Different Welfare Policy Regimes

    Get PDF
    This article brings up to date welfare regime differences in the time fathers spend on childcare and core housework, using Multinational Time Use Study data (1971–2010) from fifteen countries. Although Nordic fathers continue to set the bar, the results provide some support for the idea of a catch-up in core housework among Southern regime fathers. The results also suggest an increasing polarization in Liberal countries, whereby fathers who were meaningfully involved in family life were increasingly likely to spend more time doing core housework and, particularly, childcare. Fathers living in Corporatist countries have been least responsive to change

    Ionospheric simulator survey

    Get PDF
    Evaluation of D and E region ionospheric simulation technique

    Expanding direction of the period doubling operator

    Full text link
    We prove that the period doubling operator has an expanding direction at the fixed point. We use the induced operator, a ``Perron-Frobenius type operator'', to study the linearization of the period doubling operator at its fixed point. We then use a sequence of linear operators with finite ranks to study this induced operator. The proof is constructive. One can calculate the expanding direction and the rate of expansion of the period doubling operator at the fixed point

    Whole Earth Telescope observations of the hot helium atmosphere pulsating white dwarf EC 20058-5234

    Get PDF
    We present the analysis of a total of 177h of high-quality optical time-series photometry of the helium atmosphere pulsating white dwarf (DBV) EC 20058-5234. The bulk of the observations (135h) were obtained during a WET campaign (XCOV15) in July 1997 that featured coordinated observing from 4 southern observatory sites over an 8-day period. The remaining data (42h) were obtained in June 2004 at Mt John Observatory in NZ over a one-week observing period. This work significantly extends the discovery observations of this low-amplitude (few percent) pulsator by increasing the number of detected frequencies from 8 to 18, and employs a simulation procedure to confirm the reality of these frequencies to a high level of significance (1 in 1000). The nature of the observed pulsation spectrum precludes identification of unique pulsation mode properties using any clearly discernable trends. However, we have used a global modelling procedure employing genetic algorithm techniques to identify the n, l values of 8 pulsation modes, and thereby obtain asteroseismic measurements of several model parameters, including the stellar mass (0.55 M_sun) and T_eff (~28200 K). These values are consistent with those derived from published spectral fitting: T_eff ~ 28400 K and log g ~ 7.86. We also present persuasive evidence from apparent rotational mode splitting for two of the modes that indicates this compact object is a relatively rapid rotator with a period of 2h. In direct analogy with the corresponding properties of the hydrogen (DAV) atmosphere pulsators, the stable low-amplitude pulsation behaviour of EC 20058 is entirely consistent with its inferred effective temperature, which indicates it is close to the blue edge of the DBV instability strip. (abridged)Comment: 19 pages, 8 figures, 5 tables, MNRAS accepte

    Mode Identification from Combination Frequency Amplitudes in ZZ Ceti Stars

    Get PDF
    The lightcurves of variable DA stars are usually multi-periodic and non-sinusoidal, so that their Fourier transforms show peaks at eigenfrequencies of the pulsation modes and at sums and differences of these frequencies. These combination frequencies provide extra information about the pulsations, both physical and geometrical, that is lost unless they are analyzed. Several theories provide a context for this analysis by predicting combination frequency amplitudes. In these theories, the combination frequencies arise from nonlinear mixing of oscillation modes in the outer layers of the white dwarf, so their analysis cannot yield direct information on the global structure of the star as eigenmodes provide. However, their sensitivity to mode geometry does make them a useful tool for identifying the spherical degree of the modes that mix to produce them. In this paper, we analyze data from eight hot, low-amplitude DAV white dwarfs and measure the amplitudes of combination frequencies present. By comparing these amplitudes to the predictions of the theory of Goldreich & Wu, we have verified that the theory is crudely consistent with the measurements. We have also investigated to what extent the combination frequencies can be used to measure the spherical degree (ell) of the modes that produce them. We find that modes with ell > 2 are easily identifiable as high ell based on their combination frequencies alone. Distinguishing between ell=1 and 2 is also possible using harmonics. These results will be useful for conducting seismological analysis of large ensembles of ZZ Ceti stars, such as those being discovered using the Sloan Digital Sky Survey. Because this method relies only on photometry at optical wavelengths, it can be applied to faint stars using 4 m class telescopes.Comment: 73 pages, 22 figures, accepted in the Ap

    Why Major Programs Need Innovation Support Labs: An Example from the Space Shuttle Launch Program at KSC

    Get PDF
    For over 30 years the Kennedy Space Center (KSC) has processed the Space Shuttle; handling all hands-on aspects from receiving the Orbiter, External Tanks, Solid Rocket Booster Segments, and Payloads, through certification, check-out, and assembly, and ending with fueling, count-down, and launch. A team of thousands have worked this highly complicated, yet supremely organized, process and have, as a consequence, generated an exceptional amount of technology to solve a host of problems. This paper describes the contributions of one team that formed with the express purpose to help solve some of these diverse Shuttle ground processing problems

    An outburst from a massive star 40 days before a supernova explosion

    Get PDF
    Various lines of evidence suggest that very massive stars experience extreme mass-loss episodes shortly before they explode as a supernova. Interestingly, several models predict such pre-explosion outbursts. Establishing a causal connection between these mass-loss episodes and the final supernova explosion will provide a novel way to study pre-supernova massive-star evolution. Here we report on observations of a remarkable mass-loss event detected 40 days prior to the explosion of the Type IIn supernova SN 2010mc (PTF 10tel). Our photometric and spectroscopic data suggest that this event is a result of an energetic outburst, radiating at least 6x10^47 erg of energy, and releasing about 0.01 Solar mass at typical velocities of 2000 km/s. We show that the temporal proximity of the mass-loss outburst and the supernova explosion implies a causal connection between them. Moreover, we find that the outburst luminosity and velocity are consistent with the predictions of the wave-driven pulsation model and disfavor alternative suggestions.Comment: Nature 494, 65, including supplementary informatio

    Interaction-powered supernovae: Rise-time vs. peak-luminosity correlation and the shock-breakout velocity

    Get PDF
    Interaction of supernova (SN) ejecta with the optically thick circumstellar medium (CSM) of a progenitor star can result in a bright, long-lived shock breakout event. Candidates for such SNe include Type IIn and superluminous SNe. If some of these SNe are powered by interaction, then there should be a relation between their peak luminosity, bolometric light-curve rise time, and shock-breakout velocity. Given that the shock velocity during shock breakout is not measured, we expect a correlation, with a significant spread, between the rise time and the peak luminosity of these SNe. Here, we present a sample of 15 SNe IIn for which we have good constraints on their rise time and peak luminosity from observations obtained using the Palomar Transient Factory. We report on a possible correlation between the R-band rise time and peak luminosity of these SNe, with a false-alarm probability of 3%. Assuming that these SNe are powered by interaction, combining these observables and theory allows us to deduce lower limits on the shock-breakout velocity. The lower limits on the shock velocity we find are consistent with what is expected for SNe (i.e., ~10^4 km/s). This supports the suggestion that the early-time light curves of SNe IIn are caused by shock breakout in a dense CSM. We note that such a correlation can arise from other physical mechanisms. Performing such a test on other classes of SNe (e.g., superluminous SNe) can be used to rule out the interaction model for a class of events.Comment: Accepted to ApJ, 6 page

    The SED Machine: a robotic spectrograph for fast transient classification

    Get PDF
    Current time domain facilities are finding several hundreds of transient astronomical events a year. The discovery rate is expected to increase in the future as soon as new surveys such as the Zwicky Transient Facility (ZTF) and the Large Synoptic Sky Survey (LSST) come on line. At the present time, the rate at which transients are classified is approximately one order or magnitude lower than the discovery rate, leading to an increasing "follow-up drought". Existing telescopes with moderate aperture can help address this deficit when equipped with spectrographs optimized for spectral classification. Here, we provide an overview of the design, operations and first results of the Spectral Energy Distribution Machine (SEDM), operating on the Palomar 60-inch telescope (P60). The instrument is optimized for classification and high observing efficiency. It combines a low-resolution (R∼\sim100) integral field unit (IFU) spectrograph with "Rainbow Camera" (RC), a multi-band field acquisition camera which also serves as multi-band (ugri) photometer. The SEDM was commissioned during the operation of the intermediate Palomar Transient Factory (iPTF) and has already proved lived up to its promise. The success of the SEDM demonstrates the value of spectrographs optimized to spectral classification. Introduction of similar spectrographs on existing telescopes will help alleviate the follow-up drought and thereby accelerate the rate of discoveries.Comment: 21 pages, 20 figure

    Minimal size of a barchan dune

    Full text link
    Barchans are dunes of high mobility which have a crescent shape and propagate under conditions of unidirectional wind. However, sand dunes only appear above a critical size, which scales with the saturation distance of the sand flux [P. Hersen, S. Douady, and B. Andreotti, Phys. Rev. Lett. {\bf{89,}} 264301 (2002); B. Andreotti, P. Claudin, and S. Douady, Eur. Phys. J. B {\bf{28,}} 321 (2002); G. Sauermann, K. Kroy, and H. J. Herrmann, Phys. Rev. E {\bf{64,}} 31305 (2001)]. It has been suggested by P. Hersen, S. Douady, and B. Andreotti, Phys. Rev. Lett. {\bf{89,}} 264301 (2002) that this flux fetch distance is itself constant. Indeed, this could not explain the proto size of barchan dunes, which often occur in coastal areas of high litoral drift, and the scale of dunes on Mars. In the present work, we show from three dimensional calculations of sand transport that the size and the shape of the minimal barchan dune depend on the wind friction speed and the sand flux on the area between dunes in a field. Our results explain the common appearance of barchans a few tens of centimeter high which are observed along coasts. Furthermore, we find that the rate at which grains enter saltation on Mars is one order of magnitude higher than on Earth, and is relevant to correctly obtain the minimal dune size on Mars.Comment: 11 pages, 10 figure
    • …
    corecore