7 research outputs found

    Sperm whales reduce foraging effort during exposure to 1-2 kH z sonar and killer whale sounds

    Get PDF
    We would like to thank 3S partners and funders especially for enabling this research (NL Ministry of Defence, NOR Ministry of Defence, US Office of Naval Research, and World Wildlife Fund, Norway). PLT was supported by the Scottish Funding Council (grant HR09011) through the Marine Alliance for Science and Technology for Scotland.The time and energetic costs of behavioral responses to incidental and experimental sonar exposures, as well as control stimuli, were quantified using hidden state analysis of time series of acoustic and movement data recorded by tags (DTAG) attached to 12 sperm whales (Physeter macrocephalus) using suction cups. Behavioral state transition modeling showed that tagged whales switched to a non-foraging, non-resting state during both experimental transmissions of low-frequency active sonar from an approaching vessel (LFAS; 1-2 kH z, source level 214 dB re 1 μPa m, four tag records) and playbacks of potential predator (killer whale, Orcinus orca) sounds broadcast at naturally occurring sound levels as a positive control from a drifting boat (five tag records). Time spent in foraging states and the probability of prey capture attempts were reduced during these two types of exposures with little change in overall locomotion activity, suggesting an effect on energy intake with no immediate compensation. Whales switched to the active non-foraging state over received sound pressure levels of 131-165 dB re 1 μPa during LFAS exposure. In contrast, no changes in foraging behavior were detected in response to experimental negative controls (no-sonar ship approach or noise control playback) or to experimental medium-frequency active sonar exposures (MFAS; 6-7 kH z, source level 199 re 1 μPa m, received sound pressure level [SPL] = 73-158 dB re 1 μPa). Similarly, there was no reduction in foraging effort for three whales exposed to incidental, unidentified 4.7-5.1 kH z sonar signals received at lower levels (SPL = 89-133 dB re 1 μPa). These results demonstrate that similar to predation risk, exposure to sonar can affect functional behaviors, and indicate that increased perception of risk with higher source level or lower frequency may modulate how sperm whales respond to anthropogenic sound.Publisher PDFPeer reviewe

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Hidden Markov models capture behavioral responses to suction-cup tag deployment: a functional state approach to behavioural context

    No full text
    The biological consequences of behavioral responses to anthropogenic noise depend on context. We explore the links between individual motivation, condition, and external constraints in a concept model and illustrate the use of motivational-behavioral states as a means to quantify the biologically relevant effects of tagging. Behavioral states were estimated from multiple streams of data in a hidden Markov model and used to test the change in foraging effort and the change in energetic success or cost given the effort. The presence of a tag boat elicited a short-term reduction in time spent in foraging states but not for proxies for success or cost within foraging states

    Hidden Markov models capture behavioral responses to suction-cup tag deployment: a functional state approach to behavioural context

    No full text
    The biological consequences of behavioral responses to anthropogenic noise depend on context. We explore the links between individual motivation, condition, and external constraints in a concept model and illustrate the use of motivational-behavioral states as a means to quantify the biologically relevant effects of tagging. Behavioral states were estimated from multiple streams of data in a hidden Markov model and used to test the change in foraging effort and the change in energetic success or cost given the effort. The presence of a tag boat elicited a short-term reduction in time spent in foraging states but not for proxies for success or cost within foraging states

    Data from: Sperm whales reduce foraging effort during exposure to 1-2 kHz sonar and killer whale sounds

    No full text
    The time and energetic costs of behavioral responses to incidental and experimental sonar exposures, as well as control stimuli, were quantified using hidden state analysis of time series of acoustic and movement data recorded by tags (DTAG) attached to 12 sperm whales (Physeter macrocephalus) using suction cups. Behavioral state transition modeling showed that tagged whales switched to a non-foraging, non-resting state during both experimental transmissions of low-frequency active sonar from an approaching vessel (LFAS; 1–2 kHz, source level 214 dB re 1 μPa m, four tag records) and playbacks of potential predator (killer whale, Orcinus orca) sounds broadcast at naturally occurring sound levels as a positive control from a drifting boat (five tag records). Time spent in foraging states and the probability of prey capture attempts were reduced during these two types of exposures with little change in overall locomotion activity, suggesting an effect on energy intake with no immediate compensation. Whales switched to the active non-foraging state over received sound pressure levels of 131–165 dB re 1 μPa during LFAS exposure. In contrast, no changes in foraging behavior were detected in response to experimental negative controls (no-sonar ship approach or noise control playback) or to experimental medium-frequency active sonar exposures (MFAS; 6–7 kHz, source level 199 re 1 μPa m, received sound pressure level [SPL] = 73–158 dB re 1 μPa). Similarly, there was no reduction in foraging effort for three whales exposed to incidental, unidentified 4.7–5.1 kHz sonar signals received at lower levels (SPL = 89–133 dB re 1 μPa). These results demonstrate that similar to predation risk, exposure to sonar can affect functional behaviors, and indicate that increased perception of risk with higher source level or lower frequency may modulate how sperm whales respond to anthropogenic sound

    Time series of behavior states during baseline and controlled exposure experiments from 12 DTAG records

    No full text
    Data set used to model effects of sonar and killer whale sound playbacks on sperm whale state-switching, probability of buzzing and locomotion effort in 1-min time steps. Each row represents 1-min time steps. Columns give the identifier for each tagged whale (tagid), seconds since tag-on (sfromtot), depth at the start of the 1-min bin (depth), estimated behavior state (state; 1-surface, 2-descent, 3-layer restricted search, 4-ascent, 5-drifting, 6-active non-foraging), probability of the state (state_prob), presence/absence of terminal echolocation buzz (buzz), locomotion effort measured by overall dynamic body acceleration (ODBA), and experimental phase (experiment). The remaining columns show candidate exposure covariates, as described in Table 2 of the manuscript

    IASIL Bibliography 2012

    No full text
    corecore