27 research outputs found
Insights into the regulation of DMSP synthesis in the diatom Thalassiosira pseudonana through APR activity, proteomics and gene expression analyses on cells acclimating to changes in salinity, light and nitrogen
Despite the importance of dimethylsulphoniopropionate (DMSP) in the global sulphur cycle and climate regulation, the biological pathways underpinning its synthesis in marine phytoplankton remain poorly understood. The intracellular concentration of DMSP increases with increased salinity, increased light intensity and nitrogen starvation in the diatom Thalassiosira pseudonana. We used these conditions to investigate DMSP synthesis at the cellular level via analysis of enzyme activity, gene expression and proteome comparison. The activity of the key sulphur assimilatory enzyme, adenosine 5âČ- phosphosulphate reductase was not coordinated with increasing intracellular DMSP concentration. Under all three treatments coordination in the expression of sulphur assimilation genes was limited to increases in sulphite reductase transcripts. Similarly, proteomic 2D gel analysis only revealed an increase in phosphoenolpyruvate carboxylase following increases in DMSP concentration. Our findings suggest that increased sulphur assimilation might not be required for increased DMSP synthesis, instead the availability of carbon and nitrogen substrates may be important in the regulation of this pathway. This contrasts with the regulation of sulphur metabolism in higher plants, which generally involves upregulation of several sulphur assimilatory enzymes. In T. pseudonana changes relating to sulphur metabolism were specific to the individual treatments and, given that little coordination was seen in transcript and protein responses across the three growth conditions, different patterns of regulation might be responsible for the increase in DMSP concentration seen under each treatment
Work ethics and general work attitudes in adolescents are related to quality of life, sense of coherence and subjective health â a Swedish questionnaire study
BACKGROUND: Working life is an important arena in most people's lives, and the working line concept is important for the development of welfare in a society. For young people, the period before permanent establishment in working life has become longer during the last two decades. Knowledge about attitudes towards work can help us to understand young people's transition to the labour market. Adolescents are the future workforce, so it seems especially important to notice their attitudes towards work, including attitudes towards the welfare system. The aim of this study was to describe and analyse upper secondary school students' work attitudes, and to explore factors related to these attitudes. METHODS: The sample consisted of 606 upper secondary school students. They all received a questionnaire including questions about quality of life (QOL), sense of coherence (SOC), subjective health and attitudes towards work. The response rate was 91%. A factor analysis established two dimensions of work attitudes. Multivariate analyses were carried out by means of logistic regression models. RESULTS: Work ethics (WE) and general work attitudes (GWA) were found to be two separate dimensions of attitudes towards work. Concerning WE the picture was similar regardless of gender or study programme. Males in theoretical programmes appeared to have more unfavourable GWA than others. Multivariate analyses revealed that good QOL, high SOC and good health were significantly related to positive WE, and high SOC was positively related to GWA. Being female was positively connected to WE and GWA, while studying on a practical programme was positively related to GWA only. Among those who received good parental support, GWA seemed more favourable. CONCLUSION: Assuming that attitudes towards work are important to the working line concept, this study points out positive factors of importance for the future welfare of the society. Individual factors such as female gender, good QOL, high SOC and good health as well as support from both parents, positive experience of school and work contacts related positively to attitudes towards work. Further planning and supportive work have to take these factors into account
Metabolic Engineering of Lactobacillus plantarum for Production of l-Ribuloseâż
l-Ribulose is a rare and expensive sugar that can be used as a precursor for the production of other rare sugars of high market value such as l-ribose. In this work we describe a production process for l-ribulose using l-arabinose, a common component of polymers of lignocellulosic materials, as the starting material. A ribulokinase-deficient mutant of the heterofermentative lactic acid bacterium Lactobacillus plantarum NCIMB8826 was constructed. Expression of araA, which encodes the critical enzyme l-arabinose isomerase, was repressed by high glucose concentrations in batch cultivations. A fed-batch cultivation strategy was therefore used to maximize l-arabinose isomerase production during growth. Resting cells of the ribulokinase-deficient mutant were used for the production of l-ribulose. The isomerization of l-arabinose to l-ribulose was very unfavorable for l-ribulose formation. However, high l-ribulose yields were obtained by complexing the produced l-ribulose with borate. The process for l-ribulose production in borate buffer by resting cells was optimized using central composite designs. The experiment design suggested that the process has an optimal operation point around an l-arabinose concentration of 100 g literâ1, a borate concentration of 500 mM, and a temperature of 48°C, where the statistical software predicted an initial l-ribulose production rate of 29.1 g literâ1 hâ1, a best-achievable process productivity of 14.8 g literâ1 hâ1, and a conversion of l-arabinose to l-ribulose of 0.70 mol molâ1