42 research outputs found

    Invasive lionfish had no measurable effect on prey fish community structure across the Belizean Barrier Reef

    Get PDF
    Invasive lionfish are assumed to significantly affect Caribbean reef fish communities. However, evidence of lionfish effects on native reef fishes is based on uncontrolled observational studies or small-scale, unrepresentative experiments, with findings ranging from no effect to large effects on prey density and richness. Moreover, whether lionfish affect populations and communities of native reef fishes at larger, management-relevant scales is unknown. The purpose of this study was to assess the effects of lionfish on coral reef prey fish communities in a natural complex reef system. We quantified lionfish and the density, richness, and composition of native prey fishes (0–10 cm total length) at sixteen reefs along ∌250 km of the Belize Barrier Reef from 2009 to 2013. Lionfish invaded our study sites during this four-year longitudinal study, thus our sampling included fish community structure before and after our sites were invaded, i.e., we employed a modified BACI design. We found no evidence that lionfish measurably affected the density, richness, or composition of prey fishes. It is possible that higher lionfish densities are necessary to detect an effect of lionfish on prey populations at this relatively large spatial scale. Alternatively, negative effects of lionfish on prey could be small, essentially undetectable, and ecologically insignificant at our study sites. Other factors that influence the dynamics of reef fish populations including reef complexity, resource availability, recruitment, predation, and fishing could swamp any effects of lionfish on prey populations

    Coral reef biofilm bacterial diversity and successional trajectories are structured by reef benthic organisms and shift under chronic nutrient enrichment

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Remple, K. L., Silbiger, N. J., Quinlan, Z. A., Fox, M. D., Kelly, L. W., Donahue, M. J., & Nelson, C. E. Coral reef biofilm bacterial diversity and successional trajectories are structured by reef benthic organisms and shift under chronic nutrient enrichment. Npj Biofilms and Microbiomes, 7(1), (2021): 84, https://doi.org/10.1038/s41522-021-00252-1.Work on marine biofilms has primarily focused on host-associated habitats for their roles in larval recruitment and disease dynamics; little is known about the factors regulating the composition of reef environmental biofilms. To contrast the roles of succession, benthic communities and nutrients in structuring marine biofilms, we surveyed bacteria communities in biofilms through a six-week succession in aquaria containing macroalgae, coral, or reef sand factorially crossed with three levels of continuous nutrient enrichment. Our findings demonstrate how biofilm successional trajectories diverge from temporal dynamics of the bacterioplankton and how biofilms are structured by the surrounding benthic organisms and nutrient enrichment. We identify a suite of biofilm-associated bacteria linked with the orthogonal influences of corals, algae and nutrients and distinct from the overlying water. Our results provide a comprehensive characterization of marine biofilm successional dynamics and contextualize the impact of widespread changes in reef community composition and nutrient pollution on biofilm community structure.This work was supported through grants from the National Science Foundation for Biological Oceanography (1923877 to C.E.N. and M.J.D., 1949033 to C.E.N. and 2118687 to L.W.K., and 1924281 to N.J.S.) and the National Fish and Wildlife Foundation (grant no. 44447 to C.E.N.). This paper is funded in part by the National Oceanic and Atmospheric Administration, Project A/AS-1, which is sponsored by the University of Hawaii Sea Grant College Program, SOEST, under Institutional Grant No. NA18OAR4170076 from NOAA Office of Sea Grant, Department of Commerce. This is CSUN marine biology contribution #365, UH Sea Grant contribution UNIHI-SEAGRANT-JC-21-06, and UH SOEST contribution 11435

    High frequency temperature variability reduces the risk of coral bleaching

    Get PDF
    Coral bleaching is the detrimental expulsion of algal symbionts from their cnidarian hosts, and predominantly occurs when corals are exposed to thermal stress. The incidence and severity of bleaching is often spatially heterogeneous within reef-scales (<1 km), and is therefore not predictable using conventional remote sensing products. Here, we systematically assess the relationship between in situ measurements of 20 environmental variables, along with seven remotely sensed SST thermal stress metrics, and 81 observed bleaching events at coral reef locations spanning five major reef regions globally. We find that high-frequency temperature variability (i.e., daily temperature range) was the most influential factor in predicting bleaching prevalence and had a mitigating effect, such that a 1 °C increase in daily temperature range would reduce the odds of more severe bleaching by a factor of 33. Our findings suggest that reefs with greater high-frequency temperature variability may represent particularly important opportunities to conserve coral ecosystems against the major threat posed by warming ocean temperatures

    Macroborer Presence on Corals Increases with Nutrient Input and Promotes Parrotfish Bioerosion

    Get PDF
    Bioerosion by reef-dwelling organisms influences net carbonate budgets on reefs worldwide. External bioeroders, such as parrotfish and sea urchins, and internal bioeroders, including sponges and lithophagid bivalves, are major contributors to bioerosion on reefs. Despite their importance, few studies have examined how environmental (e.g., nutrients) or biological drivers (e.g., the actions of other bioeroders) may influence bioeroder dynamics on reefs. For example, internal bioeroders could promote external bioerosion by weakening the coral skeletal matrix. Our study investigated: ( 1) whether nutrient supply influences the dynamics between internal and external bioeroders and ( 2) how the presence of a boring bivalve, Lithophaga spp., influences parrotfish bioerosion on massive Porites corals. We hypothesized that nutrient supply would be positively correlated with Lithophaga densities on massive Porites colonies, and that as bivalve density increased, the frequency and intensity of parrotfish bioerosion would increase. To test these hypotheses, we analyzed six time points over a 10-yr period from a time series of benthic images and nitrogen content of a dominant macroalga from the fringing reefs around Moorea, French Polynesia. We found Lithophaga densities were positively correlated with nitrogen availability. Further, massive Porites that are more infested with Lithophaga had both a higher probability of being bitten by parrotfish and a higher density of bite scars from parrotfishes. Our findings indicate that increasing nutrient availability may strengthen the relationship between internal and external bioeroders, suggesting that colonies at more eutrophic sites may experience higher bioerosion rates

    The challenges of detecting and attributing ocean acidification impacts on marine ecosystems

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Doo, S. S., Kealoha, A., Andersson, A., Cohen, A. L., Hicks, T. L., Johnson, Z., I., Long, M. H., McElhany, P., Mollica, N., Shamberger, K. E. F., Silbiger, N. J., Takeshita, Y., & Busch, D. S. The challenges of detecting and attributing ocean acidification impacts on marine ecosystems. ICES Journal of Marine Science, 77(7-8), (2020): 2411-2422, https://doi.org/10.1093/icesjms/fsaa094.A substantial body of research now exists demonstrating sensitivities of marine organisms to ocean acidification (OA) in laboratory settings. However, corresponding in situ observations of marine species or ecosystem changes that can be unequivocally attributed to anthropogenic OA are limited. Challenges remain in detecting and attributing OA effects in nature, in part because multiple environmental changes are co-occurring with OA, all of which have the potential to influence marine ecosystem responses. Furthermore, the change in ocean pH since the industrial revolution is small relative to the natural variability within many systems, making it difficult to detect, and in some cases, has yet to cross physiological thresholds. The small number of studies that clearly document OA impacts in nature cannot be interpreted as a lack of larger-scale attributable impacts at the present time or in the future but highlights the need for innovative research approaches and analyses. We summarize the general findings in four relatively well-studied marine groups (seagrasses, pteropods, oysters, and coral reefs) and integrate overarching themes to highlight the challenges involved in detecting and attributing the effects of OA in natural environments. We then discuss four potential strategies to better evaluate and attribute OA impacts on species and ecosystems. First, we highlight the need for work quantifying the anthropogenic input of CO2 in coastal and open-ocean waters to understand how this increase in CO2 interacts with other physical and chemical factors to drive organismal conditions. Second, understanding OA-induced changes in population-level demography, potentially increased sensitivities in certain life stages, and how these effects scale to ecosystem-level processes (e.g. community metabolism) will improve our ability to attribute impacts to OA among co-varying parameters. Third, there is a great need to understand the potential modulation of OA impacts through the interplay of ecology and evolution (eco–evo dynamics). Lastly, further research efforts designed to detect, quantify, and project the effects of OA on marine organisms and ecosystems utilizing a comparative approach with long-term data sets will also provide critical information for informing the management of marine ecosystems.SSD was funded by NSF OCE (grant # 1415268). DSB and PM were supported by the NOAA Ocean Acidification Program and Northwest Fisheries Science Center, MHL was supported by NSF OCE (grant # 1633951), ZIJ was supported by NSF OCE (grant # 1416665) and DOE EERE (grant #DE-EE008518), NJS was supported by NSF OCE (grant # 1924281), ALC was supported by NSF OCE (grant # 1737311), and AA was supported by NSF OCE (grant # 1416518). KEFS, AK, and TLH were supported by Texas A&M University. This is CSUN Marine Biology contribution (# 306)

    Promoting inclusive metrics of success and impact to dismantle a discriminatory reward system in science

    Get PDF
    “The most dangerous phrase in the language is: We’ve always done it this way.” —Rear Admiral Grace HopperSuccess and impact metrics in science are based on a system that perpetuates sexist and racist “rewards” by prioritizing citations and impact factors. These metrics are flawed and biased against already marginalized groups and fail to accurately capture the breadth of individuals’ meaningful scientific impacts. We advocate shifting this outdated value system to advance science through principles of justice, equity, diversity, and inclusion. We outline pathways for a paradigm shift in scientific values based on multidimensional mentorship and promoting mentee well-being. These actions will require collective efforts supported by academic leaders and administrators to drive essential systemic change.Peer reviewe

    A novel ÎŒCT analysis reveals different responses of bioerosion and secondary accretion to environmental variability

    Get PDF
    Corals build reefs through accretion of calcium carbonate (CaCO3) skeletons, but net reef growth also depends on bioerosion by grazers and borers and on secondary calcification by crustose coralline algae and other calcifying invertebrates. However, traditional field methods for quantifying secondary accretion and bioerosion confound both processes, do not measure them on the same time-scale, or are restricted to 2D methods. In a prior study, we compared multiple environmental drivers of net erosion using pre- and post-deployment micro-computed tomography scans (ÎŒCT; calculated as the % change in volume of experimental CaCO3 blocks) and found a shift from net accretion to net erosion with increasing ocean acidity. Here, we present a novel ÎŒCT method and detail a procedure that aligns and digitally subtracts pre- and post-deployment ÎŒCT scans and measures the simultaneous response of secondary accretion and bioerosion on blocks exposed to the same environmental variation over the same time-scale. We tested our method on a dataset from a prior study and show that it can be used to uncover information previously unattainable using traditional methods. We demonstrated that secondary accretion and bioerosion are driven by different environmental parameters, bioerosion is more sensitive to ocean acidity than secondary accretion, and net erosion is driven more by changes in bioerosion than secondary accretion

    Biophysical feedbacks mediate carbonate chemistry in coastal ecosystems across spatiotemporal gradients.

    No full text
    Ocean acidification (OA) projections are primarily based on open ocean environments, despite the ecological importance of coastal systems in which carbonate dynamics are fundamentally different. Using temperate tide pools as a natural laboratory, we quantified the relative contribution of community composition, ecosystem metabolism, and physical attributes to spatiotemporal variability in carbonate chemistry. We found that biological processes were the primary drivers of local pH conditions. Specifically, non-encrusting producer-dominated systems had the highest and most variable pH environments and the highest production rates, patterns that were consistent across sites spanning 11° of latitude and encompassing multiple gradients of natural variability. Furthermore, we demonstrated a biophysical feedback loop in which net community production increased pH, leading to higher net ecosystem calcification. Extreme spatiotemporal variability in pH is, thus, both impacting and driven by biological processes, indicating that shifts in community composition and ecosystem metabolism are poised to locally buffer or intensify the effects of OA
    corecore