75 research outputs found

    Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform

    Get PDF
    Perspiration-based wearable biosensors facilitate continuous monitoring of individuals’ health states with real-time and molecular-level insight. The inherent inaccessibility of sweat in sedentary individuals in large volume (≥10 µL) for on-demand and in situ analysis has limited our ability to capitalize on this noninvasive and rich source of information. A wearable and miniaturized iontophoresis interface is an excellent solution to overcome this barrier. The iontophoresis process involves delivery of stimulating agonists to the sweat glands with the aid of an electrical current. The challenge remains in devising an iontophoresis interface that can extract sufficient amount of sweat for robust sensing, without electrode corrosion and burning/causing discomfort in subjects. Here, we overcame this challenge through realizing an electrochemically enhanced iontophoresis interface, integrated in a wearable sweat analysis platform. This interface can be programmed to induce sweat with various secretion profiles for real-time analysis, a capability which can be exploited to advance our knowledge of the sweat gland physiology and the secretion process. To demonstrate the clinical value of our platform, human subject studies were performed in the context of the cystic fibrosis diagnosis and preliminary investigation of the blood/sweat glucose correlation. With our platform, we detected the elevated sweat electrolyte content of cystic fibrosis patients compared with that of healthy control subjects. Furthermore, our results indicate that oral glucose consumption in the fasting state is followed by increased glucose levels in both sweat and blood. Our solution opens the possibility for a broad range of noninvasive diagnostic and general population health monitoring applications

    Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis

    Get PDF
    Wearable sensor technologies are essential to the realization of personalized medicine through continuously monitoring an individual’s state of health. Sampling human sweat, which is rich in physiological information, could enable non-invasive monitoring. Previously reported sweat-based and other non-invasive biosensors either can only monitor a single analyte at a time or lack on-site signal processing circuitry and sensor calibration mechanisms for accurate analysis of the physiological state. Given the complexity of sweat secretion, simultaneous and multiplexed screening of target biomarkers is critical and requires full system integration to ensure the accuracy of measurements. Here we present a mechanically flexible and fully integrated (that is, no external analysis is needed) sensor array for multiplexed in situ perspiration analysis, which simultaneously and selectively measures sweat metabolites (such as glucose and lactate) and electrolytes (such as sodium and potassium ions), as well as the skin temperature (to calibrate the response of the sensors). Our work bridges the technological gap between signal transduction, conditioning (amplification and filtering), processing and wireless transmission in wearable biosensors by merging plastic-based sensors that interface with the skin with silicon integrated circuits consolidated on a flexible circuit board for complex signal processing. This application could not have been realized using either of these technologies alone owing to their respective inherent limitations. The wearable system is used to measure the detailed sweat profile of human subjects engaged in prolonged indoor and outdoor physical activities, and to make a real-time assessment of the physiological state of the subjects. This platform enables a wide range of personalized diagnostic and physiological monitoring applications

    Influence of handler relationships and experience on health parameters, glucocorticoid responses and behaviour of semi-captive Asian elephants

    Get PDF
    Declining wild populations combined with accumulating captive populations of e.g. livestock, pets, draught and zoo animals have resulted in some threatened species with substantial proportions of their populations in captivity. The interactions animals have with humans in captivity depend on handler familiarity and relationship quality and can affect animal health, growth and reproduction with consequences for the success of conservation programmes. However, assessments of how specific human–animal relationships affect a range of physiological and behavioural outcomes are rare. Here, we studied semi-captive Asian elephants with detailed records of elephant–handler (mahout) relationships and veterinary management, allowing assessment of multiple welfare indicators in relation to specific mahout–elephant relationship lengths and mahout experience. These included measures of physiological stress (faecal glucocorticoid metabolite [FGM], heterophil:lymphocyte ratio [H:L]), muscle damage (creatine kinase [CK]), immunological health (total white blood cell count [TWBC]) and behaviour (response to mahout verbal commands). We found no evidence that FGM or H:L related to aspects of the mahout–elephant relationship. Longer overall mahout experience (i.e. years of being a mahout) was linked to increased muscle damage and inflammation, but the lengths of specific mahout–elephant relationships were inversely associated with muscle damage in working-age elephants. Elephants responded more to familiar mahouts in behavioural tasks and faster to mahouts they had known for longer. In summary, our results found little evidence that the mahout–elephant relationship affects physiological stress in this population based on FGM and H:L, but mahout experience and relationships were linked to other physiological responses (CK, TWBC), and elephants require behavioural adjustment periods following mahout changes. Key words: Animal welfare, glucocorticoids, human–animal interactions, human–animal relationships, mahout, physiology</p

    Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis

    Get PDF
    Wearable sensor technologies are essential to the realization of personalized medicine through continuously monitoring an individual’s state of health. Sampling human sweat, which is rich in physiological information, could enable non-invasive monitoring. Previously reported sweat-based and other non-invasive biosensors either can only monitor a single analyte at a time or lack on-site signal processing circuitry and sensor calibration mechanisms for accurate analysis of the physiological state. Given the complexity of sweat secretion, simultaneous and multiplexed screening of target biomarkers is critical and requires full system integration to ensure the accuracy of measurements. Here we present a mechanically flexible and fully integrated (that is, no external analysis is needed) sensor array for multiplexed in situ perspiration analysis, which simultaneously and selectively measures sweat metabolites (such as glucose and lactate) and electrolytes (such as sodium and potassium ions), as well as the skin temperature (to calibrate the response of the sensors). Our work bridges the technological gap between signal transduction, conditioning (amplification and filtering), processing and wireless transmission in wearable biosensors by merging plastic-based sensors that interface with the skin with silicon integrated circuits consolidated on a flexible circuit board for complex signal processing. This application could not have been realized using either of these technologies alone owing to their respective inherent limitations. The wearable system is used to measure the detailed sweat profile of human subjects engaged in prolonged indoor and outdoor physical activities, and to make a real-time assessment of the physiological state of the subjects. This platform enables a wide range of personalized diagnostic and physiological monitoring applications

    Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform

    Get PDF
    Perspiration-based wearable biosensors facilitate continuous monitoring of individuals’ health states with real-time and molecular-level insight. The inherent inaccessibility of sweat in sedentary individuals in large volume (≥10 µL) for on-demand and in situ analysis has limited our ability to capitalize on this noninvasive and rich source of information. A wearable and miniaturized iontophoresis interface is an excellent solution to overcome this barrier. The iontophoresis process involves delivery of stimulating agonists to the sweat glands with the aid of an electrical current. The challenge remains in devising an iontophoresis interface that can extract sufficient amount of sweat for robust sensing, without electrode corrosion and burning/causing discomfort in subjects. Here, we overcame this challenge through realizing an electrochemically enhanced iontophoresis interface, integrated in a wearable sweat analysis platform. This interface can be programmed to induce sweat with various secretion profiles for real-time analysis, a capability which can be exploited to advance our knowledge of the sweat gland physiology and the secretion process. To demonstrate the clinical value of our platform, human subject studies were performed in the context of the cystic fibrosis diagnosis and preliminary investigation of the blood/sweat glucose correlation. With our platform, we detected the elevated sweat electrolyte content of cystic fibrosis patients compared with that of healthy control subjects. Furthermore, our results indicate that oral glucose consumption in the fasting state is followed by increased glucose levels in both sweat and blood. Our solution opens the possibility for a broad range of noninvasive diagnostic and general population health monitoring applications

    Bioerosion of siliceous rocks driven by rock-boring freshwater insects

    Get PDF
    Macrobioerosion of mineral substrates in fresh water is a little-known geological process. Two examples of rock-boring bivalve molluscs were recently described from freshwater environments. To the best of our knowledge, rock-boring freshwater insects were previously unknown. Here, we report on the discovery of insect larvae boring into submerged siltstone (aleurolite) rocks in tropical Asia. These larvae belong to a new mayfly species and perform their borings using enlarged mandibles. Their traces represent a horizontally oriented, tunnel-like macroboring with two apertures. To date, only three rock-boring animals are known to occur in fresh water globally: a mayfly, a piddock, and a shipworm. All the three species originated within primarily wood-boring clades, indicating a simplified evolutionary shift from wood to hardground substrate based on a set of morphological and anatomical preadaptations evolved in wood borers (e.g., massive larval mandibular tusks in mayflies and specific body, shell, and muscle structure in bivalves)

    Disposable sensors in diagnostics, food and environmental monitoring

    Get PDF
    Disposable sensors are low‐cost and easy‐to‐use sensing devices intended for short‐term or rapid single‐point measurements. The growing demand for fast, accessible, and reliable information in a vastly connected world makes disposable sensors increasingly important. The areas of application for such devices are numerous, ranging from pharmaceutical, agricultural, environmental, forensic, and food sciences to wearables and clinical diagnostics, especially in resource‐limited settings. The capabilities of disposable sensors can extend beyond measuring traditional physical quantities (for example, temperature or pressure); they can provide critical chemical and biological information (chemo‐ and biosensors) that can be digitized and made available to users and centralized/decentralized facilities for data storage, remotely. These features could pave the way for new classes of low‐cost systems for health, food, and environmental monitoring that can democratize sensing across the globe. Here, a brief insight into the materials and basics of sensors (methods of transduction, molecular recognition, and amplification) is provided followed by a comprehensive and critical overview of the disposable sensors currently used for medical diagnostics, food, and environmental analysis. Finally, views on how the field of disposable sensing devices will continue its evolution are discussed, including the future trends, challenges, and opportunities

    Geographical distribution of Burkholderia pseudomallei in soil in Myanmar.

    Get PDF
    BACKGROUND: Burkholderia pseudomallei is a Gram-negative bacterium found in soil and water in many tropical countries. It causes melioidosis, a potentially fatal infection first described in 1911 in Myanmar. Melioidosis is a common cause of sepsis and death in South and South-east Asia, but it is rarely diagnosed in Myanmar. We conducted a nationwide soil study to identify areas where B. pseudomallei is present. METHODOLOGY/PRINCIPAL FINDINGS: We collected soil samples from 387 locations in all 15 states and regions of Myanmar between September 2017 and June 2019. At each site, three samples were taken at each of three different depths (30, 60 and 90 cm) and were cultured for B. pseudomallei separately, along with a pooled sample from each site (i.e. 10 cultures per site). We used a negative binomial regression model to assess associations between isolation of B. pseudomallei and environmental factors (season, soil depth, soil type, land use and climate zones). B. pseudomallei was isolated in 7 of 15 states and regions. Of the 387 sites, 31 (8%) had one or more positive samples and of the 3,870 samples cultured, 103 (2.7%) tested positive for B. pseudomallei. B. pseudomallei was isolated more frequently during the monsoon season [RR-2.28 (95% CI: 0.70-7.38)] and less in the hot dry season [RR-0.70 (95% CI: 0.19-2.56)] compared to the cool dry season, and in the tropical monsoon climate zone [RR-2.26; 95% CI (0.21-6.21)] compared to the tropical dry winter climate zone. However, these associations were not statistically significant. B. pseudomallei was detected at all three depths and from various soil types (clay, silt and sand). Isolation was higher in agricultural land (2.2%), pasture land (8.5%) and disused land (5.8%) than in residential land (0.4%), but these differences were also not significant. CONCLUSION/SIGNIFICANCE: This study confirms a widespread distribution of B. pseudomallei in Myanmar. Clinical studies should follow to obtain a better picture of the burden of melioidosis in Myanmar
    corecore