94 research outputs found

    Working memory training mostly engages general-purpose large-scale networks for learning

    Get PDF
    The present meta-analytic study examined brain activation changes following working memory (WM) training, a form of cognitive training that has attracted considerable interest. Comparisons with perceptual-motor (PM) learning revealed that WM training engages domain-general large-scale networks for learning encompassing the dorsal attention and salience networks, sensory areas, and striatum. Also the dynamics of the training-induced brain activation changes within these networks showed a high overlap between WM and PM training. The distinguishing feature for WM training was the consistent modulation of the dorso- and ventrolateral prefrontal cortex (DLPFC/VLPFC) activity. The strongest candidate for mediating transfer to similar untrained WM tasks was the frontostriatal system, showing higher striatal and VLPFC activations, and lower DLPFC activations after training. Modulation of transfer-related areas occurred mostly with longer training periods. Overall, our findings place WM training effects into a general perception-action cycle, where some modulations may depend on the specific cognitive demands of a training task.Peer reviewe

    Global scale analysis on the extent of river channel belts

    Get PDF
    Rivers form channel belts that encompass the area of the river channel and its associated levees, bars, splays and overbank landforms. The channel belt is critical for understanding the physical river evolution through time, predicting river behavior and management of freshwater resources. To date, there is no global-scale, quantitative study of the extent of river channel belts. Here we show, based on a pattern recognition algorithm, the global surface area of channel belts at an approximate 1 km resolution is 30.5 × 105 km2, seven times larger than the extent of river channels. We find 52% of river channels associated with the channel belts have a multi-threaded planform with the remaining 48% being single-threaded by surface area. The global channel belt (GCB) datasets provide new methods for high-resolution global scale landform classifications and for incorporating the channel belt into flood mitigation, freshwater budgets, ecosystem accounting and biogeochemical analyses.publishedVersio

    Comparison of different methods in analyzing short-term air pollution effects in a cohort study of susceptible individuals

    Get PDF
    BACKGROUND: Short-term fluctuations of ambient air pollution have been associated with exacerbation of cardiovascular disease. A multi-city study was designed to assess the probability of recurrent hospitalization in a cohort of incident myocardial infarction survivors in five European cities. The objective of this paper is to discuss the methods for analyzing short-term health effects in a cohort study based on a case-series. METHODS: Three methods were considered for the analyses of the cohort data: Poisson regression approach, case-crossover analyses and extended Cox regression analyses. The major challenge of these analyses is to appropriately consider changes within the cohort over time due to changes in the underlying risk following a myocardial infarction, slow time trends in risk factors within the population, dynamic cohort size and seasonal variation. RESULTS: Poisson regression analyses, case-crossover analyses and Extended Cox regression analyses gave similar results. Application of smoothing methods showed the capability to adequately model the complex time trends. CONCLUSION: From a practical point of view, Poisson regression analyses are less time-consuming, and therefore might be used for confounder selection and most of the analyses. However, replication of the results with Cox models is desirable to assure that the results are independent of the analytical approach used. In addition, extended Cox regression analyses would allow a joint estimation of long-term and short-term health effects of time-varying exposures

    Interactions between Glutathione S-Transferase P1, Tumor Necrosis Factor, and Traffic-Related Air Pollution for Development of Childhood Allergic Disease

    Get PDF
    BACKGROUND: Air pollutants may induce airway inflammation and sensitization due to generation of reactive oxygen species. The genetic background to these mechanisms could be important effect modifiers. OBJECTIVE: Our goal was to assess interactions between exposure to air pollution and single nucleotide polymorphisms (SNPs) in the beta2-adrenergic receptor (ADRB2), glutathione S-transferase P1 (GSTP1), and tumor necrosis factor (TNF) genes for development of childhood allergic disease. METHODS: In a birth cohort originally of 4,089 children, we assessed air pollution from local traffic using nitrogen oxides (traffic NO(x)) as an indicator based on emission databases and dispersion modeling and estimated individual exposure through geocoding of home addresses. We measured peak expiratory flow rates and specific IgE for inhalant and food allergens at 4 years of age, and selected children with asthma symptoms up to 4 years of age (n = 542) and controls (n = 542) for genotyping. RESULTS: Interaction effects on allergic sensitization were indicated between several GSTP1 SNPs and traffic NO(x) exposure during the first year of life (p(nominal) < 0.001-0.06). Children with Ile105Val/Val105Val genotypes were at increased risk of sensitization to any allergen when exposed to elevated levels of traffic NO(x) (for a difference between the 5th and 95th percentile of exposure: odds ratio = 2.4; 95% confidence interval, 1.0-5.3). In children with TNF-308 GA/AA genotypes, the GSTP1-NO(x) interaction effect was even more pronounced. We observed no conclusive interaction effects for ADRB2. CONCLUSION: The effect of air pollution from traffic on childhood allergy appears to be modified by GSTP1 and TNF variants, supporting a role of genes controlling the antioxidative system and inflammatory response in allergy

    Increased dopamine release after working-memory updating training: Neurochemical correlates of transfer

    Get PDF
    AbstractPrevious work demonstrates that working-memory (WM) updating training results in improved performance on a letter-memory criterion task, transfers to an untrained n-back task, and increases striatal dopamine (DA) activity during the criterion task. Here, we sought to replicate and extend these findings by also examining neurochemical correlates of transfer. Four positron emission tomography (PET) scans using the radioligand raclopride were performed. Two of these assessed DAD2 binding (letter memory; n-back) before 5 weeks of updating training, and the same two scans were performed post training. Key findings were (a) pronounced training-related behavioral gains in the letter-memory criterion task, (b) altered striatal DAD2 binding potential after training during letter-memory performance, suggesting training-induced increases in DA release, and (c) increased striatal DA activity also during the n-back transfer task after the intervention, but no concomitant behavioral transfer. The fact that the training-related DA alterations during the transfer task were not accompanied by behavioral transfer suggests that increased DA release may be a necessary, but not sufficient, condition for behavioral transfer to occur.</div

    Biological and genetic interaction between Tenascin C and Neuropeptide S receptor 1 in allergic diseases

    Get PDF
    Neuropeptide S receptor 1 (NPSR1, GPRA 154, GPRA) has been verified as a susceptibility gene for asthma and related phenotypes. The ligand for NPSR1, Neuropeptide S (NPS), activates signalling through NPSR1 and microarray analysis has identified Tenascin C (TNC) as a target gene of NPS-NPSR1 signalling. TNC has previously been implicated as a risk gene for asthma. We aimed therefore to study the genetic association of TNC in asthma- and allergy-related disorders as well as the biological and genetic interactions between NPSR1 and TNC. Regulation of TNC was investigated using NPS stimulated NPSR1 transfected cells. We genotyped 12 TNC SNPs in the cross-sectional PARSIFAL study (3113 children) and performed single SNP association, haplotype association and TNC and NPSR1 gene-gene interaction analyses. Our experimental results show NPS-dependent upregulation of TNC-mRNA. The genotyping results indicate single SNP and haplotype associations for several SNPs in TNC with the most significant association to rhinoconjunctivitis for a haplotype, with a frequency of 29% in cases (P = 0.0005). In asthma and atopic sensitization significant gene-gene interactions were found between TNC and NPSR1 SNPs, indicating that depending on the NPSR1 genotype, TNC can be associated with either an increased or a decreased risk of disease. We conclude that variations in TNC modifies, not only risk for asthma, but also for rhinoconjunctivitis. Furthermore, we show epistasis based on both a direct suggested regulatory effect and a genetic interaction between NPSR1 and TNC. These results suggest merging of previously independent pathways of importance in the development of asthma- and allergy-related trait

    Mielenterveystoipujan toimintakyvyn mittaaminen kuntoutuksessa : LivingSkills Kuntoutuminen -työväline toimintakykymittarina ja osallisuutta vahvistavana työmenetelmänä

    Get PDF
    Mielenterveystoipujan toimintakyvyn mittaaminen on keskeinen osa kuntoutusprosessia, jossa korostuvat yksilön osallisuus ja aktiivinen rooli omassa toipumisessaan. Tämä työpaperi esittelee LivingSkills Kuntoutuminen -mittarin, joka on kehitetty vastaamaan sosiaalipalvelujärjestelmän eri tasoilla ilmeneviä tarpeita ja vahvistamaan toipujan motivaatiota sekä osallistumista kuntoutukseen. Paperi pureutuu psyykkisen sairauden vaikutuksiin toimintakykyyn ja arjessa pärjäämiseen. Lisäksi kuvataan mittarin kehityskaari ja tarjotaan näkemyksiä siitä, miten toimintakykymittari voi toimia osallisuutta vahvistavana työvälineenä kuntoutuksessa

    Polymorphisms of the ITGAM Gene Confer Higher Risk of Discoid Cutaneous than of Systemic Lupus Erythematosus

    Get PDF
    Background Lupus erythematosus (LE) is a heterogeneous disease ranging from mainly skin-restricted manifestations (discoid LE [DLE] and subacute cutaneous LE) to a progressive multisystem disease (systemic LE [SLE]). Genetic association studies have recently identified several strong susceptibility genes for SLE, including integrin alpha M (ITGAM), also known as CD11b, whereas the genetic background of DLE is less clear. Principal findings To specifically investigate whether ITGAM is a susceptibility gene not only for SLE, but also for cutaneous DLE, we genotyped 177 patients with DLE, 85 patients with sporadic SLE, 190 index cases from SLE families and 395 population control individuals from Finland for nine genetic markers at the ITGAM locus. SLE patients were further subdivided by the presence or absence of discoid rash and renal involvement. In addition, 235 Finnish and Swedish patients positive for Ro/SSA-autoantibodies were included in a subphenotype analysis. Analysis of the ITGAM coding variant rs1143679 showed highly significant association to DLE in patients without signs of systemic disease (P-value = 4.73x10-11, OR = 3.20, 95% CI = 2.23-4.57). Significant association was also detected to SLE patients (P-value = 8.29x10-6, OR = 2.14, 95% CI = 1.52-3.00), and even stronger association was found when stratifying SLE patients by presence of discoid rash (P-value = 3.59x10-8, OR = 3.76, 95% CI = 2.29-6.18). Significance We propose ITGAM as a novel susceptibility gene for cutaneous DLE. The risk effect is independent of systemic involvement and has an even stronger genetic influence on the risk of DLE than of SLE.Peer reviewe
    corecore