136 research outputs found

    Supplemental oxygen strategies in infants with bronchopulmonary dysplasia after the neonatal intensive care unit period:study protocol for a randomised controlled trial (SOS BPD study)

    Get PDF
    Introduction Supplemental oxygen is the most important treatment for preterm born infants with established bronchopulmonary dysplasia (BPD). However, it is unknown what oxygen saturation levels are optimal to improve outcomes in infants with established BPD from 36 weeks postmenstrual age (PMA) onwards. The aim of this study is to compare the use of a higher oxygen saturation limit (≥95%) to a lower oxygen saturation limit (≥90%) after 36 weeks PMA in infants diagnosed with moderate or severe BPD. Methods and analysis This non-blinded, multicentre, randomised controlled trial will recruit 198 preterm born infants with moderate or severe BPD between 36 and 38 weeks PMA. Infants will be randomised to either a lower oxygen saturation limit of 95% or to a lower limit of 90%; supplemental oxygen and/or respiratory support will be weaned based on the assigned lower oxygen saturation limit. Adherence to the oxygen saturation limit will be assessed by extracting oxygen saturation profiles from pulse oximeters regularly, until respiratory support is stopped. The primary outcome is the weight SD score at 6 months of corrected age. Secondary outcomes include anthropometrics collected at 6 and 12 months of corrected age, rehospitalisations, respiratory complaints, infant stress, parental quality of life and cost-effectiveness. Ethics and dissemination Ethical approval for the trial was obtained from the Medical Ethics Review Committee of the Erasmus University Medical Centre, Rotterdam, the Netherlands (MEC-2018-1515). Local approval for conducting the trial in the participating hospitals has been or will be obtained from the local institutional review boards. Informed consent will be obtained from the parents or legal guardians of all study participants

    TMEM106B a Novel Risk Factor for Frontotemporal Lobar Degeneration

    Get PDF
    Recently, the first genome-wide association (GWA) study in frontotemporal lobar degeneration (FTLD) identified common genetic variability at the TMEM106B gene on chromosome 7p21.3 as a potential important risk-modifying factor for FTLD with pathologic inclusions of TAR DNA-binding protein (FTLD-TDP), the most common pathological subtype in FTLD. To gather additional evidence for the implication of TMEM106B in FTLD risk, multiple replication studies in geographically distinct populations were set up. In this review, we revise all recent replication and follow-up studies of the FTLD-TDP GWA study and summarize the growing body of evidence that establish TMEM106B as a bona fide risk factor for FTLD. With the TMEM106B gene, a new player has been identified in the pathogenic cascade of FTLD which could hold important implications for the future development of disease-modifying therapies

    Systemic Hydrocortisone To Prevent Bronchopulmonary Dysplasia in preterm infants (the SToP-BPD study): Statistical analysis plan

    Get PDF
    Background: Bronchopulmonary dysplasia (BPD) is the most common complication of preterm birth with short-term and long-term adverse consequences. Although the glucocorticoid dexamethasone has been proven to be beneficial for the prevention of BPD, there are concerns about an increased risk of adverse neurodevelopmental outcome. Hydrocortisone has been suggested as an alternative therapy. The aim of the Systemic Hydrocortisone To Prevent Bronchopulmonary Dysplasia in preterm infants (SToP-BPD) trial is to assess the efficacy and safety of postnatal hydrocortisone administration for the reduction of death or BPD in ventilator-dependent preterm infants. Methods/design: The SToP-BPD study is a multicentre, double-blind, placebo-controlled hydrocortisone trial in preterm infants at risk for BPD. After parental informed consent is obtained, ventilator-dependent infants are randomly allocated to hydrocortisone or placebo treatment during a 22-day period. The primary outcome measure is the composite outcome of death or BPD at 36 weeks postmenstrual age. Secondary outcomes are short-term effects on pulmonary condition and long-term neurodevelopmental sequelae assessed at 2 years corrected age. Complications of treatment, other serious adverse events and suspected unexpected serious adverse reactions are reported as safety outcomes. This pre-specified statistical analysis plan was written and submitted without knowledge of the unblinded data

    A locus at 19q13.31 significantly reduces the <em>ApoE</em> ε4 risk for Alzheimer\u27s Disease in African Ancestry

    Get PDF
    Copyright: \ua9 2022 Rajabli et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. African descent populations have a lower Alzheimer disease risk from ApoE ε4 compared to other populations. Ancestry analysis showed that the difference in risk between African and European populations lies in the ancestral genomic background surrounding the ApoE locus (local ancestry). Identifying the mechanism(s) of this protection could lead to greater insight into the etiology of Alzheimer disease and more personalized therapeutic intervention. Our objective is to follow up the local ancestry finding and identify the genetic variants that drive this risk difference and result in a lower risk for developing Alzheimer disease in African ancestry populations. We performed association analyses using a logistic regression model with the ApoE ε4 allele as an interaction term and adjusted for genome-wide ancestry, age, and sex. Discovery analysis included imputed SNP data of 1,850 Alzheimer disease and 4,331 cognitively intact African American individuals. We performed replication analyses on 63 whole genome sequenced Alzheimer disease and 648 cognitively intact Ibadan individuals. Additionally, we reproduced results using whole-genome sequencing of 273 Alzheimer disease and 275 cognitively intact admixed Puerto Rican individuals. A further comparison was done with SNP imputation from an additional 8,463 Alzheimer disease and 11,365 cognitively intact non-Hispanic White individuals. We identified a significant interaction between the ApoE ε4 allele and the SNP rs10423769_A allele, (β = -0.54,SE = 0.12,p-value = 7.50x10-6) in the discovery data set, and replicated this finding in Ibadan (β = -1.32,SE = 0.52,p-value = 1.15x10-2) and Puerto Rican (β = -1.27,SE = 0.64,p-value = 4.91x10-2) individuals. The non-Hispanic Whites analyses showed an interaction trending in the “protective” direction but failing to pass a 0.05 significance threshold (β = -1.51,SE = 0.84,p-value = 7.26x10-2). The presence of the rs10423769_A allele reduces the odds ratio for Alzheimer disease risk from 7.2 for ApoE ε4/ε4 carriers lacking the A allele to 2.1 for ApoE ε4/ε4 carriers with at least one A allele. This locus is located approximately 2 mB upstream of the ApoE locus, in a large cluster of pregnancy specific beta-1 glycoproteins on chromosome 19 and lies within a long noncoding RNA, ENSG00000282943. This study identified a new African-ancestry specific locus that reduces the risk effect of ApoE ε4 for developing Alzheimer disease. The mechanism of the interaction with ApoEε4 is not known but suggests a novel mechanism for reducing the risk for ε4 carriers opening the possibility for potential ancestry-specific therapeutic intervention

    Gaps in clinical research in frontotemporal dementia: A call for diversity and disparities–focused research

    Get PDF
    Frontotemporal dementia (FTD) is one of the leading causes of dementia before age 65 and often manifests as abnormal behavior (in behavioral variant FTD) or language impairment (in primary progressive aphasia). FTD's exact clinical presentation varies by culture, language, education, social norms, and other socioeconomic factors; current research and clinical practice, however, is mainly based on studies conducted in North America and Western Europe. Changes in diagnostic criteria and procedures as well as new or adapted cognitive tests are likely needed to take into consideration global diversity. This perspective paper by two professional interest areas of the Alzheimer's Association International Society to Advance Alzheimer's Research and Treatment examines how increasing global diversity impacts the clinical presentation, screening, assessment, and diagnosis of FTD and its treatment and care. It subsequently provides recommendations to address immediate needs to advance global FTD research and clinical practice

    The bilirubin albumin ratio in the management of hyperbilirubinemia in preterm infants to improve neurodevelopmental outcome: A randomized controlled trial - BARTrial

    Get PDF
    Background and Objective: High bilirubin/albumin (B/A) ratios increase the risk of bilirubin neurotoxicity. The B/A ratio may be a valuable measure, in addition to the total serum bilirubin (TSB), in the management of hyperbilirubinemia. We aimed to assess whether the additional use of B/A ratios in the management of hyperbilirubinemia in preterm infants improved neurodevelopmental outcome. Methods: In a prospective, randomized controlled trial, 615 preterm infants of 32 weeks' gestation or less were randomly assigned to treatment based on either B/A ratio and TSB thresholds (consensus-based), whichever threshold was crossed first, or on the TSB thresholds only. The primary outcome was neurodevelopment at 18 to 24 months' corrected age as assessed with the Bayley Scales of Infant Development III by investigators unaware of treatment allocation. Secondary outcomes included complications of preterm birth and death. Results: Composite motor (100±13 vs. 101±12) and cognitive (101±12 vs. 101±11) scores did not differ between the B/A ratio and TSB groups. Demographic characteristics, maximal TSB levels, B/A ratios, and other secondary outcomes were similar. The rates of death and/or severe neurodevelopmental impairment for th

    Cooperative Genome-Wide Analysis Shows Increased Homozygosity in Early Onset Parkinson's Disease

    Get PDF
    Parkinson's disease (PD) occurs in both familial and sporadic forms, and both monogenic and complex genetic factors have been identified. Early onset PD (EOPD) is particularly associated with autosomal recessive (AR) mutations, and three genes, PARK2, PARK7 and PINK1, have been found to carry mutations leading to AR disease. Since mutations in these genes account for less than 10% of EOPD patients, we hypothesized that further recessive genetic factors are involved in this disorder, which may appear in extended runs of homozygosity

    Breakpoint mapping of 13 large parkin deletions/duplications reveals an exon 4 deletion and an exon 7 duplication as founder mutations

    Get PDF
    Early-onset Parkinson’s disease (EOPD) has been associated with recessive mutations in parkin (PARK2). About half of the mutations found in parkin are genomic rearrangements, i.e., large deletions or duplications. Although many different rearrangements have been found in parkin before, the exact breakpoints involving these rearrangements are rarely mapped. In the present study, the exact breakpoints of 13 different parkin deletions/duplications, detected in 13 patients out of a total screened sample of 116 EOPD patients using Multiple Ligation Probe Amplification (MLPA) analysis, were mapped using real time quantitative polymerase chain reaction (PCR), long-range PCR and sequence analysis. Deletion/duplication-specific PCR tests were developed as a rapid and low cost tool to confirm MLPA results and to test family members or patients with similar parkin deletions/duplications. Besides several different deletions, an exon 3 deletion, an exon 4 deletion and an exon 7 duplication were found in multiple families. Haplotype analysis in four families showed that a common haplotype of 1.2 Mb could be distinguished for the exon 7 duplication and a common haplotype of 6.3 Mb for the deletion of exon 4. These findings suggest common founder effects for distinct large rearrangements in parkin

    Modeling Parkinson’s Disease Using Induced Pluripotent Stem Cells

    Get PDF
    Our understanding of the underlying molecular mechanism of Parkinson’s disease (PD) is hampered by a lack of access to affected human dopaminergic (DA) neurons on which to base experimental research. Fortunately, the recent development of a PD disease model using induced pluripotent stem cells (iPSCs) provides access to cell types that were previously unobtainable in sufficient quantity or quality, and presents exciting promises for the elucidation of PD etiology and the development of potential therapeutics. To more effectively model PD, we generated two patient-derived iPSC lines: a line carrying a homozygous p.G2019S mutation in the leucine-rich repeat kinase 2 (LRRK2) gene and another carrying a full gene triplication of the α-synuclein encoding gene, SNCA. We demonstrated that these PD-linked pluripotent lines were able to differentiate into DA neurons and that these neurons exhibited increased expression of key oxidative stress response genes and α-synuclein protein. Moreover, when compared to wild-type DA neurons, LRRK2-G2019S iPSC-derived DA neurons were more sensitive to caspase-3 activation caused by exposure to hydrogen peroxide, MG-132, and 6-hydroxydopamine. In addition, SNCA-triplication iPSC-derived DA neurons formed early ubiquitin-positive puncta and were more sensitive to peak toxicity from hydrogen peroxide-induced stress. These aforementioned findings suggest that LRRK2-G2019S and SNCA-triplication iPSC-derived DA neurons exhibit early phenotypes linked to PD. Given the high penetrance of the homozygous LRRK2 mutation, the expression of wild-type α-synuclein protein in the SNCA-triplication line, and the clinical resemblance of patients afflicted with these familial disorders to sporadic PD patients, these iPSC-derived neurons may be unique and valuable models for disease diagnostics and development of novel pharmacological agents for alleviation of relevant disease phenotypes

    Pharmacokinetics of morphine in encephalopathic neonates treated with therapeutic hypothermia

    Get PDF
    Objective Morphine is a commonly used drug in encephalopathic neonates treated with therapeutic hypothermia after perinatal asphyxia. Pharmacokinetics and optimal dosing of morphine in this population are largely unknown. The objective of this study was to describe pharmacokinetics of morphine and its metabolites morphine-3-glucuronide and morphine-6-glucuronide in encephalopathic neonates treated with therapeutic hypothermia and to develop pharmacokinetics based dosing guidelines for this population. Study design Term and near-term encephalopathic neonates treated with therapeutic hypothermia and receiving morphine were included in two multicenter cohort studies between 2008-2010 (SHIVER) and 2010-2014 (PharmaCool). Data were collected during hypothermia and rewarming, including blood samples for quantification of morphine and its metabolites. Parental informed consent was obtained for all participants. Results 244 patients (GA mean (sd) 39.8 (1.6) weeks, BW mean (sd) 3,428 (613) g, male 61.5%) were included. Morphine clearance was reduced under hypothermia (33.5 degrees C) by 6.89%/degrees C (95% CI 5.37%/degrees C-8.41%/degrees C, p<0.001) and metabolite clearance by 4.91%/degrees C (95% CI 3.53%/degrees C-6.22%/degrees C, p<0.001) compared to normothermia (36.5 degrees C). Simulations showed that a loading dose of 50 mu g/kg followed by continuous infusion of 5 mu g/kg/h resulted in morphine plasma concentrations in the desired range (between 10 and 40 mu g/L) during hypothermia. Conclusions Clearance of morphine and its metabolites in neonates is affected by therapeutic hypothermia. The regimen suggested by the simulations will be sufficient in the majority of patients. However, due to the large interpatient variability a higher dose might be necessary in individual patients to achieve the desired effect
    • …
    corecore