9 research outputs found

    Population Pharmacokinetics and Dosing Optimization of Ceftazidime in Term Asphyxiated Neonates during Controlled Therapeutic Hypothermia

    Get PDF
    Ceftazidime is an antibiotic commonly used to treat bacterial infections in term neonates undergoing controlled therapeutic hypothermia (TH) for hypoxic-ischemic encephalopathy after perinatal asphyxia. We aimed to describe the population pharmacokinetics (PK) of ceftazidime in asphyxiated neonates during hypothermia, rewarming, and normothermia and propose a population-based rational dosing regimen with optimal PK/pharmacodynamic (PD) target attainment. Data were collected in the PharmaCool prospective observational multicenter study. A population PK model was constructed, and the probability of target attainment (PTA) was assessed during all phases of controlled TH using targets of 100% of the time that the concentration in the blood exceeds the MIC (T.MIC) (for efficacy purposes and 100% T.4×MIC and 100% T.5×MIC to prevent resistance). A total of 35 patients with 338 ceftazidime concentrations were included. An allometrically scaled one-compartment model with postnatal age and body temperature as covariates on clearance was constructed. For a typical patient receiving the current dose of 100 mg/kg of body weight/day in 2 doses and assuming a worst-case MIC of 8 mg/L for Pseudomonas aeruginosa, the PTA was 99.7% for 100% T.MIC during hypothermia (33.7°C; postnatal age [PNA] of 2 days). The PTA decreased to 87.7% for 100% T.MIC during normothermia (36.7°C; PNA of 5 days). Therefore, a dosing regimen of 100 mg/kg/day in 2 doses during hypothermia and rewarming and 150 mg/kg/day in 3 doses during the following normothermic phase is advised. Higher-dosing regimens (150 mg/kg/day in 3 doses during hypothermia and 200 mg/kg/day in 4 doses during normothermia) could be considered when achievements of 100% T.4×MIC and 100% T.5×MIC are desired.</p

    Phenobarbital, Midazolam Pharmacokinetics, Effectiveness, and Drug-Drug Interaction in Asphyxiated Neonates Undergoing Therapeutic Hypothermia

    No full text
    Background: Phenobarbital and midazolam are commonly used drugs in (near-)term neonates treated with therapeutic hypothermia for hypoxic-ischaemic encephalopathy, for sedation, and/or as anti-epileptic drug. Phenobarbital is an inducer of cytochrome P450 (CYP) 3A, while midazolam is a CYP3A substrate. Therefore, co-treatment with phenobarbital might impact midazolam clearance. Objectives: To assess pharmacokinetics and clinical anti-epileptic effectiveness of phenobarbital and midazolam in asphyxiated neonates and to develop dosing guidelines. Methods: Data were collected in the prospective multicentre PharmaCool study. In the present study, neonates treated with therapeutic hypothermia and receiving midazolam and/or phenobarbital were included. Plasma concentrations of phenobarbital and midazolam including its metabolites were determined in blood samples drawn on days 2-5 after birth. Pharmacokinetic analyses were performed using non-linear mixed effects modelling; clinical effectiveness was defined as no use of additional anti-epileptic drugs. Results: Data were available from 113 (phenobarbital) and 118 (midazolam) neonates; 68 were treated with both medications. Only clearance of 1-hydroxy midazolam was influenced by hypothermia. Phenobarbital co-administration increased midazolam clearance by a factor 2.3 (95% CI 1.9-2.9, p < 0.05). Anticonvulsant effectiveness was 65.5% for phenobarbital and 37.1% for add-on midazolam. Conclusions: Therapeutic hypothermia does not influence clearance of phenobarbital or midazolam in (near-)term neonates with hypoxic-ischaemic encephalopathy. A phenobarbital dose of 30 mg/kg is advised to reach therapeutic concentrations. Phenobarbital co-administration significantly increased midazolam clearance. Should phenobarbital be substituted by non-CYP3A inducers as first-line anticonvulsant, a 50% lower midazolam maintenance dose might be appropriate to avoid excessive exposure during the first days after birth

    Supplementary Material for: Phenobarbital, Midazolam Pharmacokinetics, Effectiveness, and Drug-Drug Interaction in Asphyxiated Neonates Undergoing Therapeutic Hypothermia

    No full text
    Background: Phenobarbital and midazolam are commonly used drugs in (near-)term neonates treated with therapeutic hypothermia for hypoxic-ischaemic encephalopathy, for sedation, and/or as anti-epileptic drug. Phenobarbital is an inducer of cytochrome P450 (CYP) 3A, while midazolam is a CYP3A substrate. Therefore, co-treatment with phenobarbital might impact midazolam clearance. Objectives: To assess pharmacokinetics and clinical anti-epileptic effectiveness of phenobarbital and midazolam in asphyxiated neonates and to develop dosing guidelines. Methods: Data were collected in the prospective multicentre PharmaCool study. In the present study, neonates treated with therapeutic hypothermia and receiving midazolam and/or phenobarbital were included. Plasma concentrations of phenobarbital and midazolam including its metabolites were determined in blood samples drawn on days 2–5 after birth. Pharmacokinetic analyses were performed using non-linear mixed effects modelling; clinical effectiveness was defined as no use of additional anti-epileptic drugs. Results: Data were available from 113 (phenobarbital) and 118 (midazolam) neonates; 68 were treated with both medications. Only clearance of 1-hydroxy midazolam was influenced by hypothermia. Phenobarbital co-administration increased midazolam clearance by a factor 2.3 (95% CI 1.9–2.9, p &lt; 0.05). Anticonvulsant effectiveness was 65.5% for phenobarbital and 37.1% for add-on midazolam. Conclusions: Therapeutic hypothermia does not influence clearance of phenobarbital or midazolam in (near-)term neonates with hypoxic-ischaemic encephalopathy. A phenobarbital dose of 30 mg/kg is advised to reach therapeutic concentrations. Phenobarbital co-administration significantly increased midazolam clearance. Should phenobarbital be substituted by non-CYP3A inducers as first-line anticonvulsant, a 50% lower midazolam maintenance dose might be appropriate to avoid excessive exposure during the first days after birth

    Data from: Pharmacokinetics of morphine in encephalopathic neonates treated with therapeutic hypothermia

    No full text
    Objective: Morphine is a commonly used drug in encephalopathic neonates treated with therapeutic hypothermia after perinatal asphyxia. Pharmacokinetics and optimal dosing of morphine in this population are largely unknown. The objective of this study was to describe pharmacokinetics of morphine and its metabolites morphine-3-glucuronide and morphine-6-glucuronide in encephalopathic neonates treated with therapeutic hypothermia and to develop pharmacokinetics based dosing guidelines for this population. Study design: Term and near-term encephalopathic neonates treated with therapeutic hypothermia and receiving morphine were included in two multicenter cohort studies between 2008-2010 (SHIVER) and 2010-2014 (PharmaCool). Data were collected during hypothermia and rewarming, including blood samples for quantification of morphine and its metabolites. Parental informed consent was obtained for all participants. Results: 244 patients (GA mean (sd) 39.8 (1.6) weeks, BW mean (sd) 3,428 (613) g, male 61.5%) were included. Morphine clearance was reduced under hypothermia (33.5°C) by 6.89%/°C (95% CI 5.37%/°C – 8.41%/°C, p<0.001) and metabolite clearance by 4.91%/°C (95% CI 3.53%/°C – 6.22%/°C, p<0.001) compared to normothermia (36.5°C). Simulations showed that a loading dose of 50 μg/kg followed by continuous infusion of 5 μg/kg/h resulted in morphine plasma concentrations in the desired range (between 10 and 40 μg/L) during hypothermia. Conclusions: Clearance of morphine and its metabolites in neonates is affected by therapeutic hypothermia. The regimen suggested by the simulations will be sufficient in the majority of patients. However, due to the large interpatient variability a higher dose might be necessary in individual patients to achieve the desired effect

    Expectant Management or Early Ibuprofen for Patent Ductus Arteriosus

    Get PDF
    BACKGROUND Cyclooxygenase inhibitors are commonly used in infants with patent ductus arteriosus (PDA), but the benefit of these drugs is uncertain. METHODS In this multicenter, noninferiority trial, we randomly assigned infants with echocardiographically confirmed PDA (diameter, >1.5 mm, with left-to-right shunting) who were extremely preterm (<28 weeks’ gestational age) to receive either expectant management or early ibuprofen treatment. The composite primary outcome included necrotizing enterocolitis (Bell’s stage IIa or higher), moderate to severe bronchopulmonary dysplasia, or death at 36 weeks’ postmenstrual age. The noninferiority of expectant management as compared with early ibuprofen treatment was defined as an absolute risk difference with an upper boundary of the onesided 95% confidence interval of less than 10 percentage points. RESULTS A total of 273 infants underwent randomization. The median gestational age was 26 weeks, and the median birth weight was 845 g. A primary-outcome event occurred in 63 of 136 infants (46.3%) in the expectant-management group and in 87 of 137 (63.5%) in the early-ibuprofen group (absolute risk difference, −17.2 percentage points; upper boundary of the one-sided 95% confidence interval [CI], −7.4; P<0.001 for noninferiority). Necrotizing enterocolitis occurred in 24 of 136 infants (17.6%) in the expectant-management group and in 21 of 137 (15.3%) in the earlyibuprofen group (absolute risk difference, 2.3 percentage points; two-sided 95% CI, −6.5 to 11.1); bronchopulmonary dysplasia occurred in 39 of 117 infants (33.3%) and in 57 of 112 (50.9%), respectively (absolute risk difference, −17.6 percentage points; two-sided 95% CI, −30.2 to −5.0). Death occurred in 19 of 136 infants (14.0%) and in 25 of 137 (18.2%), respectively (absolute risk difference, −4.3 percentage points; two-sided 95% CI, −13.0 to 4.4). Rates of other adverse outcomes were similar in the two groups. CONCLUSIONS Expectant management for PDA in extremely premature infants was noninferior to early ibuprofen treatment with respect to necrotizing enterocolitis, bronchopulmonary dysplasia, or death at 36 weeks’ postmenstrual age. (Funded by the Netherlands Organization for Health Research and Development and the Belgian Health Care Knowledge Center; BeNeDuctus ClinicalTrials.gov number, NCT02884219; EudraCT number, 2017-001376-28.

    Lower versus Traditional Treatment Threshold for Neonatal Hypoglycemia

    No full text
    BACKGROUND Worldwide, many newborns who are preterm, small or large for gestational age, or born to mothers with diabetes are screened for hypoglycemia, with a goal of preventing brain injury. However, there is no consensus on a treatment threshold that is safe but also avoids overtreatment. METHODS In a multicenter, randomized, noninferiority trial involving 689 otherwise healthy newborns born at 35 weeks of gestation or later and identified as being at risk for hypoglycemia, we compared two threshold values for treatment of asymptomatic moderate hypoglycemia. We sought to determine whether a management strategy that used a lower threshold (treatment administered at a glucose concentration of <36 mg per deciliter [2.0 mmol per liter]) would be noninferior to a traditional threshold (treatment at a glucose concentration of <47 mg per deciliter [2.6 mmol per liter]) with respect to psychomotor development at 18 months, assessed with the Bayley Scales of Infant and Toddler Development, third edition, Dutch version (Bayley-III-NL; scores range from 50 to 150 [mean {±SD}, 100±15]), with higher scores indicating more advanced development and 7.5 points (one half the SD) representing a clinically important difference). The lower threshold would be considered noninferior if scores were less than 7.5 points lower than scores in the traditional-threshold group. RESULTS Bayley-III-NL scores were assessed in 287 of the 348 children (82.5%) in the lower-threshold group and in 295 of the 341 children (86.5%) in the traditional-threshold group. Cognitive and motor outcome scores were similar in the two groups (mean scores [±SE], 102.9±0.7 [cognitive] and 104.6±0.7 [motor] in the lower-threshold group and 102.2±0.7 [cognitive] and 104.9±0.7 [motor] in the traditional-threshold group). The prespecified inferiority limit was not crossed. The mean glucose concentration was 57±0.4 mg per deciliter (3.2±0.02 mmol per liter) in the lower-threshold group and 61±0.5 mg per deciliter (3.4±0.03 mmol per liter) in the traditional-threshold group. Fewer and less severe hypoglycemic episodes occurred in the traditional-threshold group, but that group had more invasive diagnostic and treatment interventions. Serious adverse events in the lower-threshold group included convulsions (during normoglycemia) in one newborn and one death. CONCLUSIONS In otherwise healthy newborns with asymptomatic moderate hypoglycemia, a lower glucose treatment threshold (36 mg per deciliter) was noninferior to a traditional threshold (47 mg per deciliter) with regard to psychomotor development at 18 months. (Funded by the Netherlands Organization for Health Research and Development; HypoEXIT Current Controlled Trials number, ISRCTN79705768. opens in new tab.
    corecore