96 research outputs found

    Nuclei contain two differentially regulated pools of diacylglycerol

    Get PDF
    AbstractA number of recent studies have highlighted the presence of a nuclear pool of inositol lipids [1,2] that is regulated during progression through the cell cycle [1,3], differentiation [1,2] and after DNA damage [2], suggesting that a number of different regulatory pathways impinge upon this pool of lipids. It has been suggested that the downstream consequence of the activation of one of these nuclear phosphoinositide (PI) regulatory pathways is the generation of nuclear diacylglycerol (DAG) [1,3,4], which is important in the activation of nuclear protein kinase C (PKC) [5ā€“7]. Activation of PKC in turn appears to regulate the progression of cells through G1 and into S phase [4] and through G2 to mitosis [3,8ā€“11]. Although the evidence is enticing, there is as yet no direct demonstration that nuclear PIs can be hydrolysed to generate nuclear DAG. Previous data in murine erythroleukemia (MEL) cells have suggested that nuclear phosphoinositidase CĪ²1 (PIC-Ī²1) activity is important in the generation of nuclear DAG. Here, we demonstrate that the molecular species of nuclear DAG bears little resemblance to the PI pool and is unlikely to be generated directly by hydrolysis of these inositol lipids. Further, we show that there are in fact two distinct subnuclear pools of DAG; one that is highly disaturated and mono-unsaturated (representing more than 90% of the total nuclear DAG) and one that is highly polyunsaturated and is likely to be derived from the hydrolysis of PI. Analysis of these pools, either after differentiation or during cell-cycle progression, suggests that the pools are independently regulated, possibly by the regulation of two different nuclear phospholipase Cs (PLCs)

    Phosphatidylinositol 5-Phosphate Links Dehydration Stress to the Activity of ARABIDOPSIS TRITHORAX-LIKE Factor ATX1

    Get PDF
    Changes in gene expression enable organisms to respond to environmental stress. Levels of cellular lipid second messengers, such as the phosphoinositide PtdIns5P, change in response to a variety of stresses and can modulate the localization, conformation and activity of a number of intracellular proteins. The plant trithorax factor (ATX1) tri-methylates the lysine 4 residue of histone H3 (H3K4me3) at gene coding sequences, which positively correlates with gene transcription. Microarray analysis has identified a target gene (WRKY70) that is regulated by both ATX1 and by the exogenous addition of PtdIns5P in Arabidopsis. Interestingly, ATX1 contains a PtdIns5P interaction domain (PHD finger) and thus, phosphoinositide signaling, may link environmental stress to changes in gene transcription.Using the plant Arabidopsis as a model system, we demonstrate a link between PtdIns5P and the activity of the chromatin modifier ATX1 in response to dehydration stress. We show for the first time that dehydration leads to an increase in cellular PtdIns5P in Arabidopsis. The Arabidopsis homolog of myotubularin (AtMTM1) is capable of generating PtdIns5P and here, we show that AtMTM1 is essential for the induced increase in PtdIns5P upon dehydration. Furthermore, we demonstrate that the ATX1-dependent gene, WRKY70, is downregulated during dehydration and that lowered transcript levels are accompanied by a drastic reduction in H3K4me3 of its nucleosomes. We follow changes in WRKY70 nucleosomal K4 methylation as a model to study ATX1 activity at chromatin during dehydration stress. We found that during dehydration stress, the physical presence of ATX1 at the WRKY70 locus was diminished and that ATX1 depletion resulted from it being retained in the cytoplasm when PtdIns5P was elevated. The PHD of ATX1 and catalytically active AtMTM1 are required for the cytoplasmic localization of ATX1.The novelty of the manuscript is in the discovery of a mechanistic link between a chromatin modifying activity (ATX1) and a lipid (PtdIns5P) synthesis in a signaling pathway that ultimately results in altered expression of ATX1 dependent genes downregulated in response to dehydration stress

    Divergent functions of the myotubularin (MTM) homologs AtMTM1 and AtMTM2 in \u3ci\u3eArabidopsis thaliana\u3c/i\u3e: evolution of the plant MTM family

    Get PDF
    Myotubularin and myotubularin-related proteins are evolutionarily conserved in eukaryotes. Defects in their function result in muscular dystrophy, neuronal diseases and leukemia in humans. In contrast to the animal lineage, where genes encoding both active and inactive myotubularins (phosphoinositide 3-phosphatases) have appeared and proliferated in the basal metazoan group, myotubularin genes are not found in the unicellular relatives of green plants. However, they are present in land plants encoding proteins highly similar to the active metazoan enzymes. Despite their remarkable structural conservation, plant and animal myotubularins have significantly diverged in their functions. While loss of myotubularin function causes severe disease phenotypes in humans it is not essential for the cellular homeostasis under normal conditions in Arabidopsis thaliana. Instead, myotubularin deficiency is associated with altered tolerance to dehydration stress. The two Arabidopsis genes AtMTM1 and AtMTM2 have originated from a segmental chromosomal duplication and encode catalytically active enzymes. However, only AtMTM1 is involved in elevating the cellular level of phosphatidylinositol 5-phosphate in response to dehydration stress, and the two myotubularins differentially affect the Arabidopsis dehydration stress-responding transcriptome. AtMTM1 and AtMTM2 display different localization patterns in the cell, consistent with the idea that they associate with different membranes to perform specific functions. A single amino acid mutation in AtMTM2 (L250W) results in a dramatic loss of subcellular localization. Mutations in this region are linked to disease conditions in humans

    Divergent Functions of the Myotubularin (MTM) Homologs AtMTM1 and AtMTM2 in \u3ci\u3eArabidopsis thaliana\u3c/i\u3e: Evolution of the Plant MTM Family

    Get PDF
    Myotubularin and myotubularin-related proteins are evolutionarily conserved in eukaryotes. Defects in their function result in muscular dystrophy, neuronal diseases, and leukemia in humans. In contrast to the animal lineage, where genes encoding both active and inactive myotubularins (phosphoinositide 3-phosphatases) have appeared and proliferated in the basal metazoan group, myotubularin genes are not found in the unicellular relatives of green plants. However, they are present in land plants encoding proteins highly similar to the active metazoan enzymes. Despite their remarkable structural conservation, plant and animal myotubularins have significantly diverged in their functions. While loss of myotubularin function causes severe disease phenotypes in humans, it is not essential for the cellular homeostasis under normal conditions in Arabidopsis thaliana. Instead, myotubularin deficiency is associated with altered tolerance to dehydration stress. The two Arabidopsis genes AtMTM1 and AtMTM2 have originated from a segmental chromosomal duplication and encode catalytically active enzymes. However, only AtMTM1 is involved in elevating the cellular level of phosphatidylinositol 5-phosphate in response to dehydration stress, and the two myotubularins differentially affect the Arabidopsis dehydration stress-responding transcriptome. AtMTM1 and AtMTM2 display different localization patterns in the cell, consistent with the idea that they associate with different membranes to perform specific functions. A single amino acid mutation in AtMTM2 (L250W) results in a dramatic loss of subcellular localization. Mutations in this region are linked to disease conditions in humans

    Phospholipase c beta 1 (PLCb1) in acute myeloid leukemia (AML): a novel potential therapeutic target

    Get PDF
    Acute myeloid leukemia (AML) is the most common type of leukemia in adults in which leukemic myeloid derived cells replace normal blood cells leading to a loss in systemic function. Once initiated the disease develops rapidly and is typically fatal within weeks or months if left untreated. AML is a complex disease and although, the exact causes of the development of AML are unknown, risk factors include age, pre-leukemic diseases such as myelodysplastic syndrome, exposure to chemicals and radiation and genetics. The mainstay treatment is still chemotherapy together with stem cell replacement therapy and while life expectancy has increased slowly, the 5 year survival rates range between 12 and 70% with relapse rates as high as 70% depending on the subtype (canceruk). These statistics illustrate the urgent requirement for the development of novel targeted therapeutics. Phospholipases C (PLC) are critical intracellular signaling enzymes that control a wide range of cellular functions including proliferation and apoptosis that have been implicated in myelodysplastic diseases and in leukemia (Faenza et al., 2013; Shah et al.). Importantly they constitute a highly druggable family of enzymes distinct from other well established drug development targets such as protein kinases. Using the human leukemic cell line THP1, we carried out a small targeted RNAi screen to establish a role of all known PLCs in cell growth, differentiation and maintenance of the transformed phenotype. We discovered that silencing of PLCb1 or PLCH2 resulted in a strong growth arrest. PLCb1 knockdown also initiated apoptosis and attenuated growth of THP1 cells in semisolid culture, which is known to reflect the ability of cells to induce leukemia in vivo. Accordingly, we found that knockdown of PLCb1 strongly attenuated THP1-mediated development of leukemia in mice. These growth inhibitory effects of PLCb1 knockdown were extended to a mouse model of human leukaemia induced by the MLL-AF9 translocation and to human primary leukemia cells. Of direct importance to the consideration for drug development we observed that PLCb1 knockdown selectively attenuated the growth of primary human AML cells, without effecting cell growth and differentiation of normal CD34+ hematopoietic stem and progenitor cells from healthy donors. We therefore propose PLCb1 as a novel candidate for a therapeutic target in AML

    Regulation of connexin43 gap junctional communication by phosphatidylinositol 4,5-bisphosphate

    Get PDF
    Cellā€“cell communication through connexin43 (Cx43)-based gap junction channels is rapidly inhibited upon activation of various G proteinā€“coupled receptors; however, the mechanism is unknown. We show that Cx43-based cellā€“cell communication is inhibited by depletion of phosphatidylinositol 4,5-bisphosphate (PtdIns[4,5]P2) from the plasma membrane. Knockdown of phospholipase CĪ²3 (PLCĪ²3) inhibits PtdIns(4,5)P2 hydrolysis and keeps Cx43 channels open after receptor activation. Using a translocatable 5-phosphatase, we show that PtdIns(4,5)P2 depletion is sufficient to close Cx43 channels. When PtdIns(4,5)P2 is overproduced by PtdIns(4)P 5-kinase, Cx43 channel closure is impaired. We find that the Cx43 binding partner zona occludens 1 (ZO-1) interacts with PLCĪ²3 via its third PDZ domain. ZO-1 is essential for PtdIns(4,5)P2-hydrolyzing receptors to inhibit cellā€“cell communication, but not for receptorā€“PLC coupling. Our results show that PtdIns(4,5)P2 is a key regulator of Cx43 channel function, with no role for other second messengers, and suggest that ZO-1 assembles PLCĪ²3 and Cx43 into a signaling complex to allow regulation of cellā€“cell communication by localized changes in PtdIns(4,5)P2

    Nuclear Phosphoinositides as Key Determinants of Nuclear Functions

    Get PDF
    Polyphosphoinositides (PPIns) are signalling messengers representing less than five per cent of the total phospholipid concentration within the cell. Despite their low concentration, these lipids are critical regulators of various cellular processes, including cell cycle, differentiation, gene transcription, apoptosis and motility. PPIns are generated by the phosphorylation of the inositol head group of phosphatidylinositol (PtdIns). Different pools of PPIns are found at distinct subcellular compartments, which are regulated by an array of kinases, phosphatases and phospholipases. Six of the seven PPIns species have been found in the nucleus, including the nuclear envelope, the nucleoplasm and the nucleolus. The identification and characterisation of PPIns interactor and effector proteins in the nucleus have led to increasing interest in the role of PPIns in nuclear signalling. However, the regulation and functions of PPIns in the nucleus are complex and are still being elucidated. This review summarises our current understanding of the localisation, biogenesis and physiological functions of the different PPIns species in the nucleus

    Impaired neural development in a zebrafish model for Lowe syndrome

    Get PDF
    Lowe syndrome, which is characterized by defects in the central nervous system, eyes and kidneys, is caused by mutation of the phosphoinositide 5-phosphatase OCRL1. The mechanisms by which loss of OCRL1 leads to the phenotypic manifestations of Lowe syndrome are currently unclear, in part, owing to the lack of an animal model that recapitulates the disease phenotype. Here, we describe a zebrafish model for Lowe syndrome using stable and transient suppression of OCRL1 expression. Deficiency of OCRL1, which is enriched in the brain, leads to neurological defects similar to those reported in Lowe syndrome patients, namely increased susceptibility to heat-induced seizures and cystic brain lesions. In OCRL1-deficient embryos, Akt signalling is reduced and there is both increased apoptosis and reduced proliferation, most strikingly in the neural tissue. Rescue experiments indicate that catalytic activity and binding to the vesicle coat protein clathrin are essential for OCRL1 function in these processes. Our results indicate a novel role for OCRL1 in neural development, and support a model whereby dysregulation of phosphoinositide metabolism and clathrin-mediated membrane traffic leads to the neurological symptoms of Lowe syndrome

    Lipid Kinases: Charging PtdIns(4,5)P2 Synthesis

    Get PDF
    SummaryPhosphatidylinositol (4,5) bisphosphate is a lipid second messenger that controls diverse cellular processes. Phosphatidylinositolphosphate-5-kinases synthesise this lipid at the plasma membrane, although it is not clear how the localisation of these kinases is controlled. A recent study suggests that the intrinsic surface charge of the plasma membrane may be an important factor
    • ā€¦
    corecore