1,451 research outputs found

    Deep-space navigation applications of improved ground-based optical astrometry

    Get PDF
    Improvements in ground-based optical astrometry will eventually be required for navigation of interplanetary spacecraft when these spacecraft communicate at optical wavelengths. Although such spacecraft may be some years off, preliminary versions of the astrometric technology can also be used to obtain navigational improvements for the Galileo and Cassini missions. This article describes a technology-development and observational program to accomplish this, including a cooperative effort with U.S. Naval Observatory Flagstaff Station. For Galileo, Earth-based astrometry of Jupiter's Galilean satellites may improve their ephemeris accuracy by a factor of 3 to 6. This would reduce the requirements for onboard optical navigation pictures, so that more of the data transmission capability (currently limited by high-gain antenna deployment problems) can be used for science data. Also, observations of European Space Agency (ESA) Hipparcos stars with asteroid 243 Ida may provide significantly improved navigation accuracy for a planned August 1993 Galileo spacecraft encounter

    Systems analysis for ground-based optical navigation

    Get PDF
    Deep-space telecommunications systems will eventually operate at visible or near-infrared regions to provide increased information return from interplanetary spacecraft. This would require an onboard laser transponder in place of (or in addition to) the usual microwave transponder, as well as a network of ground-based and/or space-based optical observing stations. This article examines the expected navigation systems to meet these requirements. Special emphasis is given to optical astrometric (angular) measurements of stars, solar system target bodies, and (when available) laser-bearing spacecraft, since these observations can potentially provide the locations of both spacecraft and target bodies. The role of astrometry in the navigation system and the development options for astrometric observing systems are also discussed

    OGLE-2016-BLG-0613LABb: A Microlensing Planet in a Binary System

    Get PDF
    We present the analysis of OGLE-2016-BLG-0613, for which the lensing light curve appears to be that of a typical binary-lens event with two caustic spikes but with a discontinuous feature on the trough between the spikes. We find that the discontinuous feature was produced by a planetary companion to the binary lens. We find 4 degenerate triple-lens solution classes, each composed of a pair of solutions according to the well-known wide/close planetary degeneracy. One of these solution classes is excluded due to its relatively poor fit. For the remaining three pairs of solutions, the most-likely primary mass is about M10.7MM_1\sim 0.7\,M_\odot while the planet is a super-Jupiter. In all cases the system lies in the Galactic disk, about half-way toward the Galactic bulge. However, in one of these three solution classes, the secondary of the binary system is a low-mass brown dwarf, with relative mass ratios (1 : 0.03 : 0.003), while in the two others the masses of the binary components are comparable. These two possibilities can be distinguished in about 2024 when the measured lens-source relative proper motion will permit separate resolution of the lens and source.Comment: 14 pages, 9 figure

    The impact of clinical data on the evaluation of tibial fracture healing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Radiographic healing is a common outcome measure in orthopedic trials and adjudication by outcome assessors is often conducted on the basis of plain films alone. The degree to which this process reflects clinical practice, in which both plain films and clinical notes are available, is uncertain. We explored the effect of adding clinical notes to radiographs in the adjudication process of a feasibility trial of tibial shaft fractures.</p> <p>Methods</p> <p>Radiographic and clinical data from a multicenter randomized controlled trial of 51 patients with operatively treated tibial fractures formed the basis of the study data. At the completion of the trial, serial radiographs (anteroposterior and lateral) were independently evaluated for progression of fracture healing, defined as bridging of at least 3 of 4 cortices, by an adjudication committee comprised of 3 blinded orthopaedic trauma surgeons. Immediately after determination of radiographic time to healing, each surgeon was provided with clinical notes associated with each radiographic follow up visit and asked to re-visit their initial impression. Consensus was achieved for both adjudications. We calculated the percentage of time to healing consensus decisions that changed after evaluation of clinical notes. We further examined the contents of clinical notes and their relative influence on the committee's decisions.</p> <p>Results</p> <p>47 of 51 patients were determined to have healed radiographically during the trial follow-up period, and consideration of clinical notes resulted in a change of 40% (19 of 47) of time to healing consensus decisions; however, revised decisions were equally likely to support an earlier or a later time to healing. Clinical notes that resulted in a change to either a 'healed' or a 'not healed' decision contained significantly more comments of either pain resolution or deterioration, respectively, resumption of or failure to resume weightbearing, or either return or no return to work/pre-injury activities (p < 0.001).</p> <p>Conclusions</p> <p>The addition of clinical notes to the adjudication of radiographic fracture healing changed the outcome decision in a substantial number of cases. Orthopedic trialists should consider the addition of clinical notes to adjudication material in studies of fracture healing in order to enhance the generalizability of their results.</p> <p>Trial Registration</p> <p>The TRUST trial was registered [ID <a href="http://www.clinicaltrials.gov/ct2/show/NCT00667849">NCT00667849</a>] at <url>http://clinicaltrials.gov/ct2/show/NCT00667849</url></p

    Spitzer IRAC Photometry for Time Series in Crowded Fields

    Get PDF
    We develop a new photometry algorithm that is optimized for SpitzerSpitzer time series in crowded fields and that is particularly adapted to faint and/or heavily blended targets. We apply this to the 170 targets from the 2015 SpitzerSpitzer microlensing campaign and present the results of three variants of this algorithm in an online catalog. We present detailed accounts of the application of this algorithm to two difficult cases, one very faint and the other very crowded. Several of SpitzerSpitzer's instrumental characteristics that drive the specific features of this algorithm are shared by KeplerKepler and WFIRSTWFIRST, implying that these features may prove to be a useful starting point for algorithms designed for microlensing campaigns by these other missions.Comment: accepted for publication in The Astrophysical Journal Supplement, online catalog available at http://www.astronomy.ohio-state.edu/Spitzer2015

    Spitzer as a microlens parallax satellite : mass and distance measurements of the binary lens system OGLE-2014-BLG-1050L

    Get PDF
    We report the first mass and distance measurements of a caustic-crossing binary system OGLE-2014-BLG-1050 L using the space-based microlens parallax method. Spitzer captured the second caustic crossing of the event, which occurred ~10 days before that seen from Earth. Due to the coincidence that the source-lens relative motion was almost parallel to the direction of the binary-lens axis, the fourfold degeneracy, which was known before only to occur in single-lens events, persists in this case, leading to either a lower-mass (0.2 and 0.07 MΘ) binary at ~1.1 kpc or a higher-mass (0.9 and 0.35 MΘ) binary at ~3.5 kpc. However, the latter solution is strongly preferred for reasons including blending and lensing probability. OGLE-2014-BLG-1050 L demonstrates the power of microlens parallax in probing stellar and substellar binaries.Publisher PDFPeer reviewe

    New Measurement of Compton Scattering from the Deuteron and an Improved Extraction of the Neutron Electromagnetic Polarizabilities

    Get PDF
    The electromagnetic polarizabilities of the nucleon are fundamental properties that describe its response to external electric and magnetic fields. They can be extracted from Compton-scattering data --- and have been, with good accuracy, in the case of the proton. In contradistinction, information for the neutron requires the use of Compton scattering from nuclear targets. Here we report a new measurement of elastic photon scattering from deuterium using quasimonoenergetic tagged photons at the MAX IV Laboratory in Lund, Sweden. These first new data in more than a decade effectively double the world dataset. Their energy range overlaps with previous experiments and extends it by 20 MeV to higher energies. An analysis using Chiral Effective Field Theory with dynamical \Delta(1232) degrees of freedom shows the data are consistent with and within the world dataset. After demonstrating that the fit is consistent with the Baldin sum rule, extracting values for the isoscalar nucleon polarizabilities and combining them with a recent result for the proton, we obtain the neutron polarizabilities as \alpha_n = [11.55 +/- 1.25(stat) +/- 0.2(BSR) +/- 0.8(th)] X 10^{-4} fm^3 and \beta_n = [3.65 -/+ 1.25(stat) +/- 0.2(BSR) -/+ 0.8(th)] X 10^{-4} fm3, with \chi^2 = 45.2 for 44 degrees of freedom.Comment: 6 pages, 3 figures, comments from Physical Review Letters Referees addresse

    Automated measurement of brain and white matter lesion volume in type 2 diabetes mellitus

    Get PDF
    Aims/hypothesis: Type 2 diabetes mellitus has been associated with brain atrophy and cognitive decline, but the association with ischaemic white matter lesions is unclear. Previous neuroimaging studies have mainly used semiquantitative rating scales to measure atrophy and white matter lesions (WMLs). In this study we used an automated segmentation technique to investigate the association of type 2 diabetes, several diabetes-related risk factors and cognition with cerebral tissue and WML volumes. Subjects and methods: Magnetic resonance images of 99 patients with type 2 diabetes and 46 control participants from a population-based sample were segmented using a k-nearest neighbour classifier trained on ten manually segmented data sets. White matter, grey matter, lateral ventricles, cerebrospinal fluid not including lateral ventricles, and WML volumes were assessed. Analyses were adjusted for age, sex, level of education and intracranial volume. Results: Type 2 diabetes was associated with a smaller volume of grey matter (-21.8 ml; 95% CI -34.2, -9.4) and with larger lateral ventricle volume (7.1 ml; 95% CI 2.3, 12.0) and with larger white matter lesion volume (56.5%; 95% CI 4.0, 135.8), whereas white matter volume was not affected. In separate analyses for men and women, the effects of diabetes were only significant in women. Conclusions/interpretation: The combination of atrophy with larger WML volume indicates that type 2 diabetes is associated with mixed pathology in the brain. The observed sex differences were unexpected and need to be addressed in further studies. © 2007 Springer-Verlag
    corecore