7,339 research outputs found
Asteroid family identification using the Hierarchical Clustering Method and WISE/NEOWISE physical properties
Using albedos from WISE/NEOWISE to separate distinct albedo groups within the
Main Belt asteroids, we apply the Hierarchical Clustering Method to these
subpopulations and identify dynamically associated clusters of asteroids. While
this survey is limited to the ~35% of known Main Belt asteroids that were
detected by NEOWISE, we present the families linked from these objects as
higher confidence associations than can be obtained from dynamical linking
alone. We find that over one-third of the observed population of the Main Belt
is represented in the high-confidence cores of dynamical families. The albedo
distribution of family members differs significantly from the albedo
distribution of background objects in the same region of the Main Belt, however
interpretation of this effect is complicated by the incomplete identification
of lower-confidence family members. In total we link 38,298 asteroids into 76
distinct families. This work represents a critical step necessary to debias the
albedo and size distributions of asteroids in the Main Belt and understand the
formation and history of small bodies in our Solar system.Comment: Accepted to ApJ. Full version of Table 3 to be published
electronically in Ap
The Euphrosyne family's contribution to the low albedo near-Earth asteroids
The Euphrosyne asteroid family is uniquely situated at high inclination in
the outer Main Belt, bisected by the nu_6 secular resonance. This large, low
albedo family may thus be an important contributor to specific subpopulations
of the near-Earth objects. We present simulations of the orbital evolution of
Euphrosyne family members from the time of breakup to the present day, focusing
on those members that move into near-Earth orbits. We find that family members
typically evolve into a specific region of orbital element-space, with
semimajor axes near ~3 AU, high inclinations, very large eccentricities, and
Tisserand parameters similar to Jupiter family comets. Filtering all known NEOs
with our derived orbital element limits, we find that the population of
candidate objects is significantly lower in albedo than the overall NEO
population, although many of our candidates are also darker than the Euphrosyne
family, and may have properties more similar to comet nuclei. Followup
characterization of these candidates will enable us to compare them to known
family properties, and confirm which ones originated with the breakup of (31)
Euphrosyne.Comment: Accepted for publication in Ap
Pressures measured in flight on the aft fuselage and external nozzle of a twin-jet fighter
Fuselage, boundary layer, and nozzle pressures were measured in flight for a twin jet fighter over a Mach number range from 0.60 to 2.00 at test altitudes of 6100, 10,700, and 13,700 meters for angles of attack ranging from 0 deg to 7 deg. Test data were analyzed to find the effects of the propulsion system geometry. The flight variables, and flow interference. The aft fuselage flow field was complex and showed the influence of the vertical tail, nacelle contour, and the wing. Changes in the boattail angle of either engine affected upper fuselage and lower fuselage pressure coefficients upstream of the nozzle. Boundary layer profiles at the forward and aft locations on the upper nacelles were relatively insensitive to Mach number and altitude. Boundary layer thickness decreased at both stations as angle of attack increased above 4 deg. Nozzle pressure coefficient was influenced by the vertical tail, horizontal tail boom, and nozzle interfairing; the last two tended to separate flow over the top of the nozzle from flow over the bottom of the nozzle. The left nozzle axial force coefficient was most affected by Mach number and left nozzle boattail angle. At Mach 0.90, the nozzle axial force coefficient was 0.0013
Main Belt Asteroids with WISE/NEOWISE: Near-Infrared Albedos
We present revised near-infrared albedo fits of 2835 Main Belt asteroids
observed by WISE/NEOWISE over the course of its fully cryogenic survey in 2010.
These fits are derived from reflected-light near-infrared images taken
simultaneously with thermal emission measurements, allowing for more accurate
measurements of the near-infrared albedos than is possible for visible albedo
measurements. As our sample requires reflected light measurements, it
undersamples small, low albedo asteroids, as well as those with blue spectral
slopes across the wavelengths investigated. We find that the Main Belt
separates into three distinct groups of 6%, 16%, and 40% reflectance at 3.4 um.
Conversely, the 4.6 um albedo distribution spans the full range of possible
values with no clear grouping. Asteroid families show a narrow distribution of
3.4 um albedos within each family that map to one of the three observed
groupings, with the (221) Eos family being the sole family associated with the
16% reflectance 3.4 um albedo group. We show that near-infrared albedos derived
from simultaneous thermal emission and reflected light measurements are an
important indicator of asteroid taxonomy and can identify interesting targets
for spectroscopic followup.Comment: Accepted for publication in ApJ; full version of Table1 to be
published electronically in the journa
The Yarkovsky Drift's Influence on NEAs: Trends and Predictions with NEOWISE Measurements
We used WISE-derived geometric albedos (p_V) and diameters, as well as
geometric albedos and diameters from the literature, to produce more accurate
diurnal Yarkovsky drift predictions for 540 near-Earth asteroids (NEAs) out of
the current sample of \sim 8,800 known objects. As ten of the twelve objects
with the fastest predicted rates have observed arcs of less than a decade, we
list upcoming apparitions of these NEAs to facilitate observations.Comment: Accepted for publication by The Astronomical Journal. 41 pages, 3
figure
Principals\u27 Perceptions of the Rule Making Aspects of Leadership in Hawaii
This study was undertaken to determine the impact of rule-making as one of the components of leadership
Probability Theory in the Diagnosis of Cushing's Syndrome
journal articleBiomedical Informatic
The Distribution and Disposal of Cortisol in Humans
Conference PaperBiomedical Informatic
MAESTRO, CASTRO, and SEDONA -- Petascale Codes for Astrophysical Applications
Performing high-resolution, high-fidelity, three-dimensional simulations of
Type Ia supernovae (SNe Ia) requires not only algorithms that accurately
represent the correct physics, but also codes that effectively harness the
resources of the most powerful supercomputers. We are developing a suite of
codes that provide the capability to perform end-to-end simulations of SNe Ia,
from the early convective phase leading up to ignition to the explosion phase
in which deflagration/detonation waves explode the star to the computation of
the light curves resulting from the explosion. In this paper we discuss these
codes with an emphasis on the techniques needed to scale them to petascale
architectures. We also demonstrate our ability to map data from a low Mach
number formulation to a compressible solver.Comment: submitted to the Proceedings of the SciDAC 2010 meetin
- …