10 research outputs found
An approach for mining care trajectories for chronic diseases
International audienceWith the increasing burden of chronic illnesses, administrative health care databases hold valuable information that could be used to monitor and assess the processes shaping the trajectory of care of chronic patients. In this context, temporal data mining methods are promising tools, though lacking flexibility in addressing the complex nature of medical events. Here, we present a new algorithm able to extract patient trajectory patterns with different levels of granularity by relying on external taxonomies. We show the interest of our approach with the analysis of trajectories of care for colorectal cancer using data from the French casemix information system
Identification des profils de changement sur données longitudinales, illustrée par deux exemples : étude des trajectoires hopsitalières de prise en charge d'un cancer. Construction des profils évolutifs de qualité de vie lors d'un essai thérapeutique pour un cancer avancé
Context In healthcare domain, data mining for knowledge discovery represent a growing issue. Questions about the organisation of healthcare system and the study of the relation between treatment and quality of life (QoL) perceived could be addressed that way. The evolution of technologies provides us with efficient data mining tools and statistical packages containing advanced methods available for non-experts. We illustrate this approach through two issues: 1 / What organisation of healthcare system for cancer diseases management? 2 / Exploring in patients suffering from metastatic cancer, the relationship between health-related QoL perceived and treatment received as part of a clinical trial. Materials and methods Today we have large databases. Some are dedicated to gather together all hospital stays, as is the case for the national medico-administrative DRG-type database. Others are used to store information about QoL perceived by patients, routinely collected in clinical trials. The analysis of these data was carried out following three main steps: In the first step, data are prepared to be useable according to a defined concept of data analysis. For example, a classical database (patient-centered) was converted to a new database organised around a new defined entity which was different from the patient (eg. Care trajectory). Then in the second step, we applied data mining methods for knowledge discovery: we used the formal analysis of concepts method and unsupervised clustering techniques. And finally the results were presented in a graphical form. Results Concerning the question of the organisation of healthcare system, we constructed a typology of hospital care trajectories. We were able then to describe current practice in the management of cancers from the first cancer related surgical operation until one year of follow-up. In the case of breast cancer, we’ve described a typology of care on the basis of hospital costs over a one year follow up. Concerning the second question, we have also constructed a typology of QoL change patterns. This comprised three groups: Improvement, stability and degradation group.Conclusion The main interest of this work was to highlight new thoughts, which advances understanding and, contributing in appropriate solutions building.ContexteDans le domaine de la santé, l’analyse des données pour l’extraction des connaissances est un enjeu en pleine expansion. Les questions sur l’organisation des soins ou encore l’étude de l’association entre le traitement et qualité de vie (QdV) perçue pourraient être abordées sous cet angle. L’évolution des technologies permet de disposer d’outils de fouille de données performants et d’outils statistiques enrichis de méthode avancées, utilisables par les non experts. Nous avons illustré cette méthode au travers de deux questions d’actualité :1 / Quelle organisation des soins pour la prise en charge des cancers ? 2/ étude de la relation chez les patients souffrant d’un cancer métastatique entre la QdV liée à la santé perçue et les traitements reçus dans le cadre d’un essai thérapeutique.Matériels et méthodesNous disposons aujourd’hui de volumineuses bases de données. Certaines retracent le parcours hospitalier des patients, comme c’est le cas pour les données d’activités hospitalières recueillies dans le cadre du programme de médicalisation des systèmes d’information (PMSI). D’autres conservent les informations sur la QdV perçues par les patients et qui recueillies en routine actuellement dans les essais thérapeutiques. L’analyse de ces données a été réalisée suivant trois étapes principales : Tout d’abord une étape de préparation des données dont l’objectif était la compatibilité à un concept d’analyse précisé. Il s’agissait par exemple de transformer une base de données classique (centrée sur le patient) vers une nouvelle base de données où « l’unité de recueil » est une entité autre que le patient (ex. trajectoire de soins). Ensuite une deuxième étape consacrée à l’application de méthodes de fouille de données pour l’extraction connaissances : les méthodes d’analyse formelle des concepts ou encore les méthodes de classifications non-supervisée. Et enfin l’étape de restitution des résultats obtenus et présenté sous forme graphique.RésultatsPour la question de l’organisation des soins, nous avons construit une typologie des trajectoires hospitalières des soins permettait de réaliser un état des lieux des pratiques dans la prise en charge des cancers étudié depuis la chirurgie jusqu’à un an de suivi des patients. Dans le cas du Cancer du sein, nous avons décrit une typologie de prise en charge sur la base des coûts d’hospitalisation sur un suivi d’un an. Pour la deuxième question, nous avons également construit une typologie des profils évolutifs de la QdV. Celle-ci comportait 3 classes : une classe d’amélioration, une classe de stabilité et une classe de dégradation.ConclusionL’intérêt majeur de ce travail était de mettre en évidence des pistes de réflexion permettant des avancées dans la compréhension et la construction de solutions adaptées aux problèmes
Identification of patterns og change on mongitudinal data, illustrated by two exemples : study of hospital pathways in the management of cancer. Constuction of quality of life change patterns in a clinical trial for advanced cancer
ContexteDans le domaine de la santé, l’analyse des données pour l’extraction des connaissances est un enjeu en pleine expansion. Les questions sur l’organisation des soins ou encore l’étude de l’association entre le traitement et qualité de vie (QdV) perçue pourraient être abordées sous cet angle. L’évolution des technologies permet de disposer d’outils de fouille de données performants et d’outils statistiques enrichis de méthode avancées, utilisables par les non experts. Nous avons illustré cette méthode au travers de deux questions d’actualité :1 / Quelle organisation des soins pour la prise en charge des cancers ? 2/ étude de la relation chez les patients souffrant d’un cancer métastatique entre la QdV liée à la santé perçue et les traitements reçus dans le cadre d’un essai thérapeutique.Matériels et méthodesNous disposons aujourd’hui de volumineuses bases de données. Certaines retracent le parcours hospitalier des patients, comme c’est le cas pour les données d’activités hospitalières recueillies dans le cadre du programme de médicalisation des systèmes d’information (PMSI). D’autres conservent les informations sur la QdV perçues par les patients et qui recueillies en routine actuellement dans les essais thérapeutiques. L’analyse de ces données a été réalisée suivant trois étapes principales : Tout d’abord une étape de préparation des données dont l’objectif était la compatibilité à un concept d’analyse précisé. Il s’agissait par exemple de transformer une base de données classique (centrée sur le patient) vers une nouvelle base de données où « l’unité de recueil » est une entité autre que le patient (ex. trajectoire de soins). Ensuite une deuxième étape consacrée à l’application de méthodes de fouille de données pour l’extraction connaissances : les méthodes d’analyse formelle des concepts ou encore les méthodes de classifications non-supervisée. Et enfin l’étape de restitution des résultats obtenus et présenté sous forme graphique.RésultatsPour la question de l’organisation des soins, nous avons construit une typologie des trajectoires hospitalières des soins permettait de réaliser un état des lieux des pratiques dans la prise en charge des cancers étudié depuis la chirurgie jusqu’à un an de suivi des patients. Dans le cas du Cancer du sein, nous avons décrit une typologie de prise en charge sur la base des coûts d’hospitalisation sur un suivi d’un an. Pour la deuxième question, nous avons également construit une typologie des profils évolutifs de la QdV. Celle-ci comportait 3 classes : une classe d’amélioration, une classe de stabilité et une classe de dégradation.ConclusionL’intérêt majeur de ce travail était de mettre en évidence des pistes de réflexion permettant des avancées dans la compréhension et la construction de solutions adaptées aux problèmes.Context In healthcare domain, data mining for knowledge discovery represent a growing issue. Questions about the organisation of healthcare system and the study of the relation between treatment and quality of life (QoL) perceived could be addressed that way. The evolution of technologies provides us with efficient data mining tools and statistical packages containing advanced methods available for non-experts. We illustrate this approach through two issues: 1 / What organisation of healthcare system for cancer diseases management? 2 / Exploring in patients suffering from metastatic cancer, the relationship between health-related QoL perceived and treatment received as part of a clinical trial. Materials and methods Today we have large databases. Some are dedicated to gather together all hospital stays, as is the case for the national medico-administrative DRG-type database. Others are used to store information about QoL perceived by patients, routinely collected in clinical trials. The analysis of these data was carried out following three main steps: In the first step, data are prepared to be useable according to a defined concept of data analysis. For example, a classical database (patient-centered) was converted to a new database organised around a new defined entity which was different from the patient (eg. Care trajectory). Then in the second step, we applied data mining methods for knowledge discovery: we used the formal analysis of concepts method and unsupervised clustering techniques. And finally the results were presented in a graphical form. Results Concerning the question of the organisation of healthcare system, we constructed a typology of hospital care trajectories. We were able then to describe current practice in the management of cancers from the first cancer related surgical operation until one year of follow-up. In the case of breast cancer, we’ve described a typology of care on the basis of hospital costs over a one year follow up. Concerning the second question, we have also constructed a typology of QoL change patterns. This comprised three groups: Improvement, stability and degradation group.Conclusion The main interest of this work was to highlight new thoughts, which advances understanding and, contributing in appropriate solutions building
Etude descriptive des trajectoires de prise en charge des cancers dans la région Bourgogne (application aux cancers du côlon-rectum, du poumon et du sein)
DIJON-BU MĂ©decine Pharmacie (212312103) / SudocSudocFranceF
Description of Lifestyle, Including Social Life, Diet and Physical Activity, of People ≥90 years Living in Ikaria, a Longevity Blue Zone
A cross-sectional observational study was conducted to describe the lifestyle of people ≥90 years, living in Evdilos or Raches, two municipalities of the Greek island of Ikaria, classified a longevity blue zone. The 71 participants were interviewed and underwent the Mediterranean Islands study food frequency questionnaire (MEDIS-FFQ) and the international physical activity questionnaire (IPAQ). The frequency of social contacts was daily for 77.9% of participants, weekly for 16.1%, and monthly for 5.9%. Most participants (90.0%) believed in God, and 81.4% took part in religious events. A total of 62.0% attended Panigiria festivals. Access to primary health care was considered difficult in the past for 66.2% of participants, while 22.1% felt that it remained difficult at the time of the survey. The level of adherence to the Mediterranean diet was 62.7% (61.6% in women and 64.0% in men). Physical activity levels were moderate or high for 71.8% of participants (59.5% of women and 85.3% of men). In conclusion, the participants had a very high level of family solidarity, social interaction and physical activity. The results concerning the Mediterranean diet are less convincing. It would be interesting to study the impact of these factors on the longevity of the oldest old aged people living in Ikaria
Assessment of the Health Status of the Oldest Olds Living on the Greek Island of Ikaria: A Population Based-Study in a Blue Zone
To describe the demographic characteristics, socio-economic status, functional status (autonomy, strength), and health status (cognitive and thymic functions, cardiovascular risk factors, and nutritional status) of the oldest olds living on the Greek island of Ikaria. We also try to explain the longevity observed in this population
A data mining approach for grouping and analyzing trajectories of care using claim data: the example of breast cancer
International audienceBACKGROUND: With the increasing burden of chronic diseases, analyzing and understanding trajectories of care is essential for efficient planning and fair allocation of resources. We propose an approach based on mining claim data to support the exploration of trajectories of care. METHODS: A clustering of trajectories of care for breast cancer was performed with Formal Concept Analysis. We exported Data from the French national casemix system, covering all inpatient admissions in the country. Patients admitted for breast cancer surgery in 2009 were selected and their trajectory of care was recomposed with all hospitalizations occuring within one year after surgery. The main diagnoses of hospitalizations were used to produce morbidity profiles. Cumulative hospital costs were computed for each profile. RESULTS: 57,552 patients were automatically grouped into 19 classes. The resulting profiles were clinically meaningful and economically relevant. The mean cost per trajectory was 9,600Âż. Severe conditions were generally associated with higher costs. The lowest costs (6,957Âż) were observed for patients with in situ carcinoma of the breast, the highest for patients hospitalized for palliative care (26,139Âż). CONCLUSIONS: Formal Concept Analysis can be applied on claim data to produce an automatic classification of care trajectories. This flexible approach takes advantages of routinely collected data and can be used to setup cost-of-illness studies
Pre-Operative Factors Associated with the Occurrence of Acute Kidney Injury in Patients Aged 65 Years and Over Undergoing Non-Ambulatory Non-Cardiac Surgery
This study sought to identify risk factors for acute kidney injury (AKI) from pre-operative variables in a population of subjects aged over 65. Eligible patients were aged 65 years or over who underwent scheduled non-cardiac, non-ambulatory surgery. Patients with a diagnosis of AKI recorded in the hospital’s databases were considered since cases, from which 300 patients with no diagnosis of AKI, were drawn at random as controls. In total, 81 cases of post-operative AKI and 239 controls were identified. The incidence of post-operative AKI was 2.87%. Pre-operative creatinine level (p = 0.0001), a history of respiratory insufficiency (p = 0.04), prior vascular surgery (p = 0.0001) and abdominal surgery (p = 0.03) were associated with an increased risk of AKI after surgery. These four variables calculated a score and developed a nomogram for predicting occurrence of post-operative AKI. A history of renal disease was associated with increased risk of post-operative AKI, predominantly in cases of vascular or abdominal surgery