328 research outputs found

    A natural biogenic fluorapatite as a new biomaterial for orthopedics and dentistry: antibacterial activity of lingula seashell and its use for nanostructured biomimetic coatings

    Get PDF
    Calcium phosphates are widely studied in orthopedics and dentistry, to obtain biomimetic and antibacterial implants. However, the multi-substituted composition of mineralized tissues is not fully reproducible from synthetic procedures. Here, for the first time, we investigate the possible use of a natural, fluorapatite-based material, i.e., Lingula anatina seashell, resembling the composition of bone and enamel, as a biomaterial source for orthopedics and dentistry. Indeed, thanks to its unique mineralization process and conditions, L. anatina seashell is among the few natural apatite-based shells, and naturally contains ions having possible antibacterial efficacy, i.e., fluorine and zinc. After characterization, we explore its deposition by ionized jet deposition (IJD), to obtain nanostructured coatings for implantable devices. For the first time, we demonstrate that L. anatina seashells have strong antibacterial properties. Indeed, they significantly inhibit planktonic growth and cell adhesion of both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. The two strains show different susceptibility to the mineral and organic parts of the seashells, the first being more susceptible to zinc and fluorine in the mineral part, and the second to the organic (chitin-based) component. Upon deposition by IJD, all films exhibit a nanostructured morphology and sub-micrometric thickness. The multi-doped, complex composition of the target is maintained in the coating, demonstrating the feasibility of deposition of coatings starting from biogenic precursors (seashells). In conclusion, Lingula seashell-based coatings are non-cytotoxic with strong antimicrobial capability, especially against Gram-positive strains, consistently with their higher susceptibility to fluorine and zinc. Importantly, these properties are improved compared to synthetic fluorapatite, showing that the films are promising for antimicrobial applications.Lingula anatina seashell is an apatite-based shells, and naturally contains fluorine and zinc alongside an organic part (chitin). For the first time, we demonstrate that it has strong antibacterial properties, and that it can be used as nanostructured coatings for orthopaedics and dentistry

    Warping and vacua of (S)YM3+1(S)YM_{3+1}

    Get PDF
    We use dielectric branes to find non singular string theory duals of a perturbed 2+1 dimensional gauge theory living on D2 branes. By adding fermion masses we obtain theories with reduced supersymmetry. The Higgs vacua of the perturbed theory correspond to polarization of the D2 branes into D4 branes. The confining vacua correspond to polarization of the D2 branes into NS5 branes. We consider different mass perturbations. Adding three equal masses preserves N=2 supersymmetry. In this case there are no confining vacua. By adding a fourth fermion mass we break all the supersymmetry, and find confining vacua. We also obtain duals for domain walls, condensates, baryon vertices, glueballs and flux tubes. We comment on the Kahler potentials for the Higgs and confining phases. In the course of the calculations we also find a nontrivial consistency check of the NS5 brane action in a D2 brane background.Comment: 33 pages, 2 figures, LaTeX. A factor in the last term of (67) and some typos are corrected, references adde

    Anticancer prodrugs of butyric acid and formaldehyde protect against doxorubicin-induced cardiotoxicity

    Get PDF
    Formaldehyde has been previously shown to play a dominant role in promoting synergy between doxorubicin (Dox) and formaldehyde-releasing butyric acid (BA) prodrugs in killing cancer cells. In this work, we report that these prodrugs also protect neonatal rat cardiomyocytes and adult mice against toxicity elicited by Dox. In cardiomyocytes treated with Dox, the formaldehyde releasing prodrugs butyroyloxymethyl diethylphosphate (AN-7) and butyroyloxymethyl butyrate (AN-1), but not the corresponding acetaldehyde-releasing butyroyloxydiethyl phosphate (AN-88) or butyroyloxyethyl butyrate (AN-11), reduced lactate dehydrogenase leakage, prevented loss of mitochondrial membrane potential (ΔΨm) and attenuated upregulation of the proapoptotic gene Bax. In Dox-treated mice, AN-7 but not AN-88 attenuated weight-loss and mortality, and increase in serum lactate dehydrogenase. These findings show that BA prodrugs that release formaldehyde and augment Dox anticancer activity also protect against Dox cardiotoxicity. Based on these observations, clinical applications of these prodrugs for patients treated with Dox warrant further investigation

    miR-132/212 knockout mice reveal roles for these miRNAs in regulating cortical synaptic transmission and plasticity

    Get PDF
    miR-132 and miR-212 are two closely related miRNAs encoded in the same intron of a small non-coding gene, which have been suggested to play roles in both immune and neuronal function. We describe here the generation and initial characterisation of a miR-132/212 double knockout mouse. These mice were viable and fertile with no overt adverse phenotype. Analysis of innate immune responses, including TLR-induced cytokine production and IFNβ induction in response to viral infection of primary fibroblasts did not reveal any phenotype in the knockouts. In contrast, the loss of miR-132 and miR-212, while not overtly affecting neuronal morphology, did affect synaptic function. In both hippocampal and neocortical slices miR-132/212 knockout reduced basal synaptic transmission, without affecting paired-pulse facilitation. Hippocampal long-term potentiation (LTP) induced by tetanic stimulation was not affected by miR-132/212 deletion, whilst theta burst LTP was enhanced. In contrast, neocortical theta burst-induced LTP was inhibited by loss of miR-132/212. Together these results indicate that miR-132 and/or miR-212 play a significant role in synaptic function, possibly by regulating the number of postsynaptic AMPA receptors under basal conditions and during activity-dependent synaptic plasticity

    Ultrastructure of the Interlamellar Membranes of the Nacre of the Bivalve Pteria hirundo, Determined by Immunolabelling

    Get PDF
    The current model for the ultrastructure of the interlamellar membranes of molluscan nacre imply that they consist of a core of aligned chitin fibers surrounded on both sides by acidic proteins. This model was based on observations taken on previously demineralized shells, where the original structure had disappeared. Despite other earlier claims, no direct observations exist in which the different components can be unequivocally discriminated. We have applied different labeling protocols on non-demineralized nacreous shells of the bivalve Pteria. With this method, we have revealed the disposition and nature of the different fibers of the interlamellar membranes that can be observed on the surface of the nacreous shell of the bivalve Pteria hirundo by high resolution scanning electron microscopy (SEM). The minor chitin component consists of very thin fibers with a high aspect ratio and which are seemingly disoriented. Each fiber has a protein coat, which probably forms a complex with the chitin. The chitin-protein-complex fibers are embedded in an additional proteinaceous matrix. This is the first time in which the sizes, positions and distribution of the chitin fibers have been observed in situ.AJOM was financed by a PhD Grant of the FPI program from the Spanish Ministerio de Ciencia e Innovación; TCB's PhD Grant belonged to the FPU Program of the same Ministry. AJOM and AGC were supported by Projects CGL2010-20748-C02-01 and CGL2013-48247-P of the mentioned Ministry, and RNM6433 of the Consejería de Economía, Innovación y Ciencia of the Junta de Andalucía. The European COST Action TD0903 contributed via two Short Term Scientific Missions to AJOM in FM's lab in Dijon

    Disparate Impact of Butyroyloxymethyl Diethylphosphate (AN-7), a Histone Deacetylase Inhibitor, and Doxorubicin in Mice Bearing a Mammary Tumor

    Get PDF
    The histone deacetylase inhibitor (HDACI) butyroyloxymethyl diethylphosphate (AN-7) synergizes the cytotoxic effect of doxorubicin (Dox) and anti-HER2 on mammary carcinoma cells while protecting normal cells against their insults. This study investigated the concomitant changes occurring in heart tissue and tumors of mice bearing a subcutaneous 4T1 mammary tumor following treatment with AN-7, Dox, or their combination. Dox or AN-7 alone led to inhibition of both tumor growth and lung metastases, whereas their combination significantly increased their anticancer efficacy and attenuated Dox- toxicity. Molecular analysis revealed that treatment with Dox, AN-7, and to a greater degree, AN-7 together with Dox increased tumor levels of γH2AX, the marker for DNA double-strand breaks and decreased the expression of Rad51, a protein needed for DNA repair. These events culminated in increased apoptosis, manifested by the appearance of cytochrome-c in the cytosol. In the myocardium, Dox-induced cardiomyopathy was associated with an increase in γH2AX expression and a reduction in Rad51 and MRE11 expression and increased apoptosis. The addition of AN-7 to the Dox treatment protected the heart from Dox insults as was manifested by a decrease in γH2AX levels, an increase in Rad51 and MRE11 expression, and a diminution of cytochrome-c release. Tumor fibrosis was high in untreated mice but diminished in Dox- and AN-7-treated mice and was almost abrogated in AN-7+Dox-treated mice. By contrast, in the myocardium, Dox alone induced a dramatic increase in fibrosis, and AN7+Dox attenuated it. The high expression levels of c-Kit, Ki-67, c-Myc, lo-FGF, and VEGF in 4T1 tumors were significantly reduced by Dox or AN-7 and further attenuated by AN-7+Dox. In the myocardium, Dox suppressed these markers, whereas AN-7+Dox restored their expression. In conclusion, the combination of AN-7 and Dox results in two beneficial effects, improved anticancer efficacy and cardioprotection

    Perioperative changes in intraabdominal pressure during abdominoplasty

    Get PDF
    A prospective clinical study of aesthetic abdominoplasty effect on perioperative changes in intraabdominal pressure was performed in 50 patients. The changes in intraabdominal pressure intraoperatively and postoperatively were examined. Abdominoplasty was found to be associated with an increase of intraabdominal pressure with the development of intraabdominal hypertension in some cases. To predict the likelihood of intraabdominal hypertension postoperatively one should use the criterion of absolute increase in the peak airway pressure over 4 cm H20 during intraoperative ventillation.Проспективное клиническое исследование по изучению влияния абдоминопластики, выполненной по эстетическим показаниям, на изменение параметров внутрибрюшного давления проведено у 50 пациентов. Изучено изменение величины внутрибрюшного давления на этапах операции и в послеоперационном периоде. Установлено, что абдоминопластика сопровождается ростом внутрибрюшного давления с развитием в ряде случаев интраабдоминальной гипертензии. Для прогнозирования вероятности развития интраабдоминальной гипертензии в послеоперационном периоде следует использовать критерий абсолютного прироста пикового давления в дыхательных путях более 4 см вод.ст. при ИВЛ на этапах операции

    Algorithm of preoperative examination of breast surgery patients

    Get PDF
    The review of breast augmentation complications revealed a direct correlation between postoperative complications and elevated prolactin and thyroid-stimulating hormone levels, and the presence of autoimmune thyroiditis. An algorithm of preoperative examination of breast surgery patients has been developed, which allowed us to identify groups of patients at risk and to reduce early and late complication rates of breast augmentation.Анализ осложнений после протезирования молочных желез выявил прямую зависимость послеоперационных осложнений с повышенным уровнем пролактина и тиреотропного гормона, наличием аутоиммунного тиреоидита. Разработан алгоритм обследования пациенток на догоспитальном этапе перед маммопластикой, что позволило формировать группы риска и снизить процент ранних и поздних осложнений после протезирования молочных желез

    Self-assembly of amorphous calcium carbonate microlens arrays

    Get PDF
    Biological materials are often based on simple constituents and grown by the principle of self-assembly under ambient conditions. In particular, biomineralization approaches exploit efficient pathways of inorganic material synthesis. There is still a large gap between the complexity of natural systems and the practical utilization of bioinspired formation mechanisms. Here we describe a simple self-assembly route leading to a CaCO3 microlens array, somewhat reminiscent of the brittlestars' microlenses, with uniform size and focal length, by using a minimum number of components and equipment at ambient conditions. The formation mechanism of the amorphous CaCO3 microlens arrays was elucidated by confocal Raman spectroscopic imaging to be a two-step growth process mediated by the organic surfactant. CaCO3 microlens arrays are easy to fabricate, biocompatible and functional in amorphous or more stable crystalline forms. This shows that advanced optical materials can be generated by a simple mineral precipitation

    Intermolecular channels direct crystal orientation in mineralized collagen

    Get PDF
    The mineralized collagen fibril is the basic building block of bone, and is commonly pictured as a parallel array of ultrathin carbonated hydroxyapatite (HAp) platelets distributed throughout the collagen. This orientation is often attributed to an epitaxial relationship between the HAp and collagen molecules inside 2D voids within the fibril. Although recent studies have questioned this model, the structural relationship between the collagen matrix and HAp, and the mechanisms by which collagen directs mineralization remain unclear. Here, we use XRD to reveal that the voids in the collagen are in fact cylindrical pores with diameters of ~2 nm, while electron microscopy shows that the HAp crystals in bone are only uniaxially oriented with respect to the collagen. From in vitro mineralization studies with HAp, CaCO3 and γ-FeOOH we conclude that confinement within these pores, together with the anisotropic growth of HAp, dictates the orientation of HAp crystals within the collagen fibril
    corecore