27 research outputs found

    Multi-Epoch Multiwavelength Spectra and Models for Blazar 3C~279

    Get PDF
    Of the blazars detected by EGRET in GeV gamma rays, 3C 279 is not only the best-observed by EGRET, but also one of the best-monitored at lower frequencies. We have assembled eleven spectra, from GHz radio through GeV gamma rays, from the time intervals of EGRET observations. Although some of the data have appeared in previous publications, most are new, including data taken during the high states in early 1999 and early 2000. All of the spectra show substantial gamma-ray contribution to the total luminosity of the object; in a high state, the gamma-ray luminosity dominates over that at all other frequencies by a factor of more than 10. There is no clear pattern of time correlation; different bands do not always rise and fall together, even in the optical, X-ray, and gamma-ray bands. The spectra are modeled using a leptonic jet, with combined synchrotron self-Compton + external Compton gamma-ray production. Spectral variability of 3C 279 is consistent with variations of the bulk Lorentz factor of the jet, accompanied by changes in the spectral shape of the electron distribution. Our modeling results are consistent with the UV spectrum of 3C 279 being dominated by accretion disk radiation during times of low gamma-ray intensity.Comment: 39 pages including 13 figures; data tables not included (see ApJ web version or contact author

    Day-Scale Variability of 3C 279 and Searches for Correlations in Gamma-Ray, X-Ray, and Optical Bands

    Get PDF
    Light curves of 3C 279 are presented in optical (R-band), X-rays (RXTE/PCA), and gamma rays (CGRO/EGRET) for 1999 Jan-Feb and 2000 Jan-Mar. During both of those epochs the gamma-ray levels were high, and all three observed bands demonstrated substantial variation, on time scales as short as one day. Correlation analyses provided no consistent pattern, although a rather significant optical/gamma-ray correlation was seen in 1999, with a gamma-ray lag of ~2.5 days, and there are other suggestions of correlations in the light curves. For comparison, correlation analysis is also presented for the gamma-ray and X-ray light curves during the large gamma ray flare in 1996 Feb and the two gamma-bright weeks leading up to it; the correlation at that time was strong, with a gamma-ray/X-ray offset of no more than 1 day.Comment: 20 pages, including 7 figures; accepted by The Astrophysical Journa

    The WEBT BL Lacertae Campaign 2001 and its extension : Optical light curves and colour analysis 1994–2002

    Get PDF
    BL Lacertae has been the target of four observing campaigns by the Whole Earth Blazar Telescope (WEBT) collaboration. In this paper we present UBVRI light curves obtained by theWEBT from 1994 to 2002, including the last, extended BL Lac 2001 campaign. A total of about 7500 optical observations performed by 31 telescopes from Japan to Mexico have been collected, to be added to the ∌15 600 observations of the BL Lac Campaign 2000. All these data allow one to follow the source optical emission behaviour with unprecedented detail. The analysis of the colour indices reveals that the flux variability can be interpreted in terms of two components: longer-term variations occurring on a fewday time scale appear as mildly-chromatic events, while a strong bluer-when-brighter chromatism characterizes very fast (intraday) flares. By decoupling the two components, we quantify the degree of chromatism inferring that longer-term flux changes imply moving along a ∌0.1 bluerwhen- brighter slope in the B − R versus R plane; a steeper slope of ∌0.4 would distinguish the shorter-term variations. This means that, when considering the long-term trend, the B-band flux level is related to the R-band one according to a power law of index ∌1.1. Doppler factor variations on a “convex” spectrum could be the mechanism accounting for both the long-term variations and their slight chromatism.Reig Torres, Pablo, [email protected]

    The WEBT BL Lac Campaign 2000

    Full text link
    We present UBVRI light curves of BL Lacertae from May 2000 to January 2001, obtained by 24 telescopes in 11 countries. More than 15000 observations were performed in that period, which was the extension of the Whole Earth Blazar Telescope (WEBT) campaign originally planned for July-August 2000. Rapid flux oscillations are present all the time, involving variations up to a few tenths of mag on hour time scales, and witnessing an intense intraday activity of this source. Colour indexes have been derived by coupling the highest precision B and R data taken by the same instrument within 20 min and after subtracting the host galaxy contribution from the fluxes. The 620 indexes obtained show that the optical spectrum is weakly sensitive to the long-term trend, while it strictly follows the short-term flux behaviour, becoming bluer when the brightness increases. Thus, spectral changes are not related to the host galaxy contribution, but they are an intrinsic feature of fast flares. We suggest that the achromatic mechanism causing the long-term flux base-level modulation can be envisaged in a variation of the relativistic Doppler beaming factor, and that this variation is likely due to a change of the viewing angle. Discrete correlation function (DCF) analysis reveals the existence of a characteristic time scale of variability of about 7 h in the light curve of the core WEBT campaign, while no measurable time delay between variations in the B and R bands is found.Comment: 14 pages, 8 PostScript figures, 5 JPEG figures, in press for A&

    Coordinated Multiwavelength Observations of BL Lacertae in 2000

    Full text link
    BL Lacertae was the target of an extensive multiwavelength monitoring campaign in the second half of 2000. Simultaneous or quasi-simultaneous observations were taken at radio (UMRAO and Metsaehovi) and optical(WEBT collaboration) frequencies, in X-rays (BeppoSAX and RXTE), and at VHE gamma-rays (HEGRA). The WEBT optical campaign achieved an unprecedented time coverage, virtually continuous over several 10 - 20 hour segments. It revealed intraday variability on time scales of ~ 1.5 hours and evidence for spectral hardening associated with increasing optical flux. During the campaign, BL Lacertae underwent a major transition from a rather quiescent state prior to September 2000, to a flaring state for the rest of the year. This was also evident in the X-ray activity of the source. BeppoSAX observations on July 26/27 revealed a rather low X-ray flux and a hard spectrum, while a BeppoSAX pointing on Oct. 31 - Nov. 2, 2000, indicated significant variability on time scales of < a few hours, and provided evidence for the synchrotron spectrum extending out to ~ 10 keV during that time. During the July 26/27 observation, there is a tantalizing, though not statistically significant, indication of a time delay of ~ 4 - 5 hr between the BeppoSAX and the R-band light curve. Also, a low-significance detection of a time delay of 15 d between the 14.5 GHz and the 22 GHz radio light curves is reported. Several independent methods to estimate the co-moving magnetic field in the source are presented, suggesting a value of ~ 2 e_B^{2/7} G, where e_B is the magnetic-field equipartition factor w.r.t. the electron energy density in the jet.Comment: Accepted for publication in Ap

    Testing the inverse-Compton catastrophe scenario in the intra-day variable blazar S5 0716+71. I. Simultaneous broadband observations during November 2003

    Full text link
    Some intra-day variable, compact extra-galactic radio sources show brightness temperatures severely exceeding 10^{12} K, the limit set by catastrophic inverse-Compton (IC) cooling in sources of incoherent synchrotron radiation. The violation of the IC limit, possible under non-stationary conditions, would lead to IC avalanches in the soft-gamma-ray energy band during transient periods. For the first time, broadband signatures of possible IC catastrophes were searched for in S5 0716+71. A multifrequency observing campaign targetting S5 0716+71 was carried out in November 2003 under the framework of the European Network for the Investigation of Galactic nuclei through Multifrequency Analysis (ENIGMA) together with a campaign by the Whole Earth Blazar Telescope (WEBT), involving a pointing by the soft-gamma-ray satellite INTEGRAL, optical, near-infrared, sub-millimeter, millimeter, radio, and Very Long Baseline Array (VLBA) monitoring. S5 0716+71 was very bright at radio frequencies and in a rather faint optical state during the INTEGRAL pointing; significant inter-day and low intra-day variability was recorded in the radio regime, while typical fast variability features were observed in the optical band. No correlation was found between the radio and optical emission. The source was not detected by INTEGRAL, neither by the X-ray monitor JEM-X nor by the gamma-ray imager ISGRI, but upper limits to the source emission in the 3-200 keV energy band were estimated. A brightness temperature Tb>2.1x10^{14} K was inferred from the radio variability, but no corresponding signatures of IC avalanches were recorded at higher energies. The absence of IC-catastrophe signatures provides either a lower limit delta>8 to the Doppler factor affecting the radio emission or strong constraints for modelling of the Compton catastrophes in S5 0716+71.Comment: 15 pages, 3 EPS figures, 3 tables, to appear in A&

    Host galaxy magnitude of OJ 287 from its colours at minimum light

    Get PDF
    OJ 287 is a BL Lacertae type quasar in which the active galactic nucleus (AGN) outshines the host galaxy by an order of magnitude. The only exception to this may be at minimum light when the AGN activity is so low that the host galaxy may make quite a considerable contribution to the photometric intensity of the source. Such a dip or a fade in the intensity of OJ 287 occurred in 2017 November, when its brightness was about 1.75 mag lower than the recent mean level. We compare the observations of this fade with similar fades in OJ 287 observed earlier in 1989, 1999, and 2010. It appears that there is a relatively strong reddening of the B- V colours of OJ 287 when its V-band brightness drops below magnitude 17. Similar changes are also seen in V- R, V- I, and R- I colours during these deep fades. These data support the conclusion that the total magnitude of the host galaxy is V = 18.0 +/- 0.3, corresponding to M-K = -26.5 +/- 0.3 in the K-band. This is in agreement with the results, obtained using the integrated surface brightness method, from recent surface photometry of the host. These results should encourage us to use the colour separation method also in other host galaxies with strongly variable AGN. In the case of OJ 287, both the host galaxy and its central black hole are among the biggest known, and its position in the black hole mass-galaxy mass diagram lies close to the mean correlation

    Host galaxy magnitude of OJ 287 from its colours at minimum light

    Get PDF
    OJ 287 is a BL Lacertae type quasar in which the active galactic nucleus (AGN) outshines the host galaxy by an order of magnitude. The only exception to this may be at minimum light when the AGN activity is so low that the host galaxy may make quite a considerable contribution to the photometric intensity of the source. Such a dip or a fade in the intensity of OJ 287 occurred in 2017 November, when its brightness was about 1.75 mag lower than the recent mean level. We compare the observations of this fade with similar fades in OJ 287 observed earlier in 1989, 1999, and 2010. It appears that there is a relatively strong reddening of the B-V colours of OJ 287 when its V-band brightness drops below magnitude 17. Similar changes are also seen in V-R, V-I, and R-I colours during these deep fades. These data support the conclusion that the total magnitude of the host galaxy is V = 18.0 ± 0.3, corresponding to MK =-26.5 ± 0.3 in the K-band. This is in agreement with the results, obtained using the integrated surface brightness method, from recent surface photometry of the host. These results should encourage us to use the colour separation method also in other host galaxies with strongly variable AGN. In the case of OJ 287, both the host galaxy and its central black hole are among the biggest known, and its position in the black hole mass-galaxy mass diagram lies close to the mean correlation

    Brain atrophy in patients with clinically isolated syndrome

    No full text
    corecore