89 research outputs found

    Design and Characterization of a New Nozzle in a NASA Arc-Jet

    Get PDF
    The design of a new 76 mm (3 inch) nozzle of the Interaction Heating Facility arc jet at NASA Ames Research Center is described. The computational efforts which were an integral part of the preliminary design and characterization of the nozzle are described as well. Details of heat flux measurements made in this new nozzle are provided. Apart from showing the flow characteristics of the nozzle, predictions of stagnation point heat flux are compared against measurements made with a nullpoint calorimeter; the agreement between computation and measurement is found to be good. Unfortunately, pressure measurements could not be made in the first round. The predicted stagnation point pressures and heat fluxes, with appropriate scaling for a 25 mm (1 inch) diameter iso-q geometry (reference geometry), are used to establish a provisional operating envelope for the new nozzle. The envelope is shown to enclose relevant heating portions of representative atmospheric trajectories at Venus and Saturn

    Evidence of Standing Waves in Arc Jet Nozzle Flow

    Get PDF
    Waves spawned by the nozzle in the NASA Ames 60 MW Interaction Heating Facility arc jet were experimentally observed in pressure surveys at the exit of the nozzle. The waves have been seen in past CFD simulations, but were away from the region where models were tested (for the existing nozzles). However, a recent test series with a new nozzle extension (229 mm exit diameter) revealed that these waves intersect the centerline of the jet in a region where it is desirable to put test articles, and that the waves may be contributing to non-uniform recession behavior seen in Teflon (trademark) sublimation test articles tested in this new nozzle. It is reasonable to assume the ablation recession of thermal protection models will also be nonuniform due to exposure to these waves. This work shows that ablation response is sensitive to the location of test samples in the free jet relative to the location of the wave interaction, and that the issues with these waves can be avoided by choosing an optimum position for a test article in the free jet. This work describes the experimental observations along with the CFD simulations that have identified the waves emanating from the nozzle, as well as the instrumentation used to detect them. The work describes a recommended solution, derived by CFD analysis, which if implemented, should significantly reduce these flow disturbance and pressure anomalies in future nozzles

    Further evidence for the planet around 51 Pegasi

    Full text link
    The discovery of the planet around the solar-type star 51 Pegasi marked a watershed in the search for extrasolar planets. Since then seven other solar-type stars have been discovered, of which several have surprisingly short orbital periods, like the planet around 51 Peg. These planets were detected using the indirect technique of measuring variations in the Doppler shifts of lines in the spectra of the primary stars. But it is possible that oscillations of the stars themselves (or other effects) could mimic the signature of the planets, particularly around the short-period planets. The apparent lack of spectral and brightness variations, however, led to widespread acceptance that there is a planet around 51 Peg. This conclusion was challenged by the observation of systematic variations in the line profile shapes of 51 Peg, which suggested stellar oscillations. If these observations are correct, then there is no need to invoke a planet around 51 Peg to explain the data. Here we report observations of 51 Peg at a much higher spectral resolution than those in ref.9, in which we find no evidence for systematic changes in the line shapes. The data are most consistent with a planetary companion to 51 Peg.Comment: LaTeX, 6 pages, 2 figures. To appear in 8 January 1998 issue of Natur

    Time-varying Entry Heating Profile Replication with a Rotating Arc Jet Test Article

    Get PDF
    A new approach for arc jet testing of thermal protection materials at conditions approximating the time-varying conditions of atmospheric entry was developed and demonstrated. The approach relies upon the spatial variation of heat flux and pressure over a cylindrical test model. By slowly rotating a cylindrical arc jet test model during exposure to an arc jet stream, each point on the test model will experience constantly changing applied heat flux. The predicted temporal profile of heat flux at a point on a vehicle can be replicated by rotating the cylinder at a prescribed speed and direction. An electromechanical test model mechanism was designed, built, and operated during an arc jet test to demonstrate the technique

    On-orbit servicing commercial opportunities with security implications

    Get PDF
    The On-Orbit Servicing (OOS) working group discussed legal and political implications of developing a commercial OOS industry. The group considered the benefits that OOS and Active Debris Removal (ADR) can offer the satellite industry, as well as potential disadvantages for international relations between space faring nations. To gain an accurate perspective of stakeholders involved in such a process, the OOS working group held a mock hearing for OOS licensing, with members of the working group assigned to represent stakeholders. Working group members presented their cases at a simulated domestic regulatory panel, constructed of members representing various government ministers, to fully explore stakeholder views. The mock hearings explored the challenges faced by OOS and ADR entrepreneurs as well as the benefit of regulation. The groups highlighted recommendations to ensure the practicality of OOS and determine how best to encourage licensing and regulation of such activities, as summarised below. 1. The United Nations (UN) should provide regulatory guidelines for OOS and ADR. 2. Government agencies should license OOS. The Federal Aviation Administration (FAA) has taken responsibility for licensing commercial space transportation in the United States and this should be extended to OOS/ADR missions to enable short-term advancement prior to further UN regulation. 3. Government should support OOS and ADR development to ensure continued demand. This includes leading by example on government satellites and potential launch levies to enable on-going ADR funding. 4. All stakeholders should prevent weaponisation of space through transparency of operations. 5. Nations should initiate international cooperation on ADR. OOS and ADR will ensure sustainable use of satellites, particularly in LEO and GEO, for the coming decades. It is through transparency, economic stimulation and close monitoring that such endeavours will be successful

    How Strong a Kick Should be to Topple Northeastern's Tumbling Robot?

    Full text link
    Rough terrain locomotion has remained one of the most challenging mobility questions. In 2022, NASA's Innovative Advanced Concepts (NIAC) Program invited US academic institutions to participate NASA's Breakthrough, Innovative \& Game-changing (BIG) Idea competition by proposing novel mobility systems that can negotiate extremely rough terrain, lunar bumpy craters. In this competition, Northeastern University won NASA's top Artemis Award award by proposing an articulated robot tumbler called COBRA (Crater Observing Bio-inspired Rolling Articulator). This report briefly explains the underlying principles that made COBRA successful in competing with other concepts ranging from cable-driven to multi-legged designs from six other participating US institutions

    Comparing Chemistry and Census-Based Estimates of Net Ecosystem Calcification on a Rim Reef in Bermuda

    Get PDF
    Coral reef net ecosystem calcification (NEC) has decreased for many Caribbean reefs over recent decades primarily due to changes in benthic community composition. Chemistry-based approaches to calculate NEC utilize the drawdown of seawater total alkalinity (TA) combined with residence time to calculate an instantaneous measurement of NEC. Census-based approaches combine annual growth rates with benthic cover and reef structural complexity to estimate NEC occurring over annual timescales. Here, NEC was calculated for Hog Reef in Bermuda using both chemistry and census-based NEC techniques to compare the mass-balance generated by the two methods and identify the dominant biocalcifiers at Hog Reef. Our findings indicate close agreement between the annual 2011 census-based NEC 2.35 ± 1.01 kg CaCO3•m−2•y−1 and chemistry-based NEC 2.23 ± 1.02 kg CaCO3•m−2•y−1 at Hog Reef. An additional record of Hog Reef TA data calculated from an autonomous CO2 mooring measuring pCO2 and modeled pHtotal every 3-h highlights the dynamic temporal variability in coral reef NEC. This ability for chemistry-based NEC techniques to capture higher frequency variability in coral reef NEC allows the mechanisms driving NEC variability to be explored and tested. Just four coral species, Diploria labyrinthiformis, Pseudodiploria strigosa, Millepora alcicornis, and Orbicella franksi, were identified by the census-based NEC as contributing to 94 ± 19% of the total calcium carbonate production at Hog Reef suggesting these species should be highlighted for conservation to preserve current calcium carbonate production rates at Hog Reef. As coral cover continues to decline globally, the agreement between these NEC estimates suggest that either method, but ideally both methods, may serve as a useful tool for coral reef managers and conservation scientists to monitor the maintenance of coral reef structure and ecosystem services

    Structure and Evolution of Nearby Stars with Planets. I. Short-Period Systems

    Full text link
    Using the Yale stellar evolution code, we have calculated theoretical models for nearby stars with planetary-mass companions in short-period nearly circular orbits: 51 Pegasi, Tau Bootis, Upsilon Andromedae, Rho Cancri, and Rho Coronae Borealis. We present tables listing key stellar parameters such as mass, radius, age, and size of the convective envelope as a function of the observable parameters (luminosity, effective temperature, and metallicity), as well as the unknown helium fraction. For each star we construct best models based on recently published spectroscopic data and the present understanding of galactic chemical evolution. We discuss our results in the context of planet formation theory, and, in particular, tidal dissipation effects and stellar metallicity enhancements.Comment: 48 pages including 13 tables and 5 figures, to appear in Ap
    corecore