664 research outputs found
Ozone and alkyl nitrate formation from the Deepwater Horizon oil spill atmospheric emissions
Ozone (O3), alkyl nitrates (RONO2), and other photochemical products were formed in the atmosphere downwind from the Deepwater Horizon (DWH) oil spill by photochemical reactions of evaporating hydrocarbons with NOx (=NO+NO2) emissions from spill response activities. Reactive nitrogen species and volatile organic compounds (VOCs) were measured from an instrumented aircraft during daytime flights in the marine boundary layer downwind from the area of surfacing oil. A unique VOC mixture, where alkanes dominated the hydroxyl radical (OH) loss rate, was emitted into a clean marine environment, enabling a focused examination of O3 and RONO 2 formation processes. In the atmospheric plume from DWH, the OH loss rate, an indicator of potential O3 formation, was large and dominated by alkanes with between 5 and 10 carbons per molecule (C 5-C10). Observations showed that NOx was oxidized very rapidly with a 0.8h lifetime, producing primarily C6-C10 RONO2 that accounted for 78% of the reactive nitrogen enhancements in the atmospheric plume 2.5h downwind from DWH. Both observations and calculations of RONO2 and O3 production rates show that alkane oxidation dominated O3 formation chemistry in the plume. Rapid and nearly complete oxidation of NOx to RONO2 effectively terminated O3 production, with O3 formation yields of 6.0±0.5 ppbv O3 per ppbv of NOx oxidized. VOC mixing ratios were in large excess of NOx, and additional NOx would have formed additional O3 in this plume. Analysis of measurements of VOCs, O3, and reactive nitrogen species and calculations of O3 and RONO2 production rates demonstrate that NOx-VOC chemistry in the DWH plume is explained by known mechanisms. Copyright 2012 by the American Geophysical Union
Atmospheric emissions from the deepwater Horizon spill constrain air-water partitioning, hydrocarbon fate, and leak rate
The fate of deepwater releases of gas and oil mixtures is initially determined by solubility and volatility of individual hydrocarbon species; these attributes determine partitioning between air and water. Quantifying this partitioning is necessary to constrain simulations of gas and oil transport, to predict marine bioavailability of different fractions of the gas-oil mixture, and to develop a comprehensive picture of the fate of leaked hydrocarbons in the marine environment. Analysis of airborne atmospheric data shows massive amounts (∼258,000 kg/day) of hydrocarbons evaporating promptly from the Deepwater Horizon spill; these data collected during two research flights constrain air-water partitioning, thus bioavailability and fate, of the leaked fluid. This analysis quantifies the fraction of surfacing hydrocarbons that dissolves in the water column (∼33% by mass), the fraction that does not dissolve, and the fraction that evaporates promptly after surfacing (∼14% by mass). We do not quantify the leaked fraction lacking a surface expression; therefore, calculation of atmospheric mass fluxes provides a lower limit to the total hydrocarbon leak rate of 32,600 to 47,700 barrels of fluid per day, depending on reservoir fluid composition information. This study demonstrates a new approach for rapid-response airborne assessment of future oil spills. Copyright 2011 by the American Geophysical Union
A Model for the Evolution of Nucleotide Polymerase Directionality
Background: In all known living organisms, every enzyme that synthesizes nucleic acid polymers does so by adding nucleotide 59-triphosphates to the 39-hydroxyl group of the growing chain. This results in the well known 5’?3’ directionality of all DNA and RNA Polymerases. The lack of any alternative mechanism, e.g. addition in a 3’?5 ’ direction, may indicate a very early founder effect in the evolution of life, or it may be the result of a selective pressure against such an alternative. Methodology/Principal Findings: In an attempt to determine whether the lack of an alternative polymerase directionality is the result of a founder effect or evolutionary selection, we have constructed a basic model of early polymerase evolution. This model is informed by the essential chemical properties of the nucleotide polymerization reaction. With this model, we are able to simulate the growth of organisms with polymerases that synthesize either 5’?3 ’ or 3’?5 ’ in isolation or in competition with each other. Conclusions/Significance: We have found that a competition between organisms with 5’?3 ’ polymerases and 3’?5’ polymerases only results in a evolutionarily stable strategy under certain conditions. Furthermore, we have found that mutations lead to a much clearer delineation between conditions that lead to a stable coexistence of these populations and conditions which ultimately lead to success for the 5’?3 ’ form. In addition to presenting a plausible explanation for th
Cooperation, Norms, and Revolutions: A Unified Game-Theoretical Approach
Cooperation is of utmost importance to society as a whole, but is often
challenged by individual self-interests. While game theory has studied this
problem extensively, there is little work on interactions within and across
groups with different preferences or beliefs. Yet, people from different social
or cultural backgrounds often meet and interact. This can yield conflict, since
behavior that is considered cooperative by one population might be perceived as
non-cooperative from the viewpoint of another.
To understand the dynamics and outcome of the competitive interactions within
and between groups, we study game-dynamical replicator equations for multiple
populations with incompatible interests and different power (be this due to
different population sizes, material resources, social capital, or other
factors). These equations allow us to address various important questions: For
example, can cooperation in the prisoner's dilemma be promoted, when two
interacting groups have different preferences? Under what conditions can costly
punishment, or other mechanisms, foster the evolution of norms? When does
cooperation fail, leading to antagonistic behavior, conflict, or even
revolutions? And what incentives are needed to reach peaceful agreements
between groups with conflicting interests?
Our detailed quantitative analysis reveals a large variety of interesting
results, which are relevant for society, law and economics, and have
implications for the evolution of language and culture as well
Information transfer fidelity in spin networks and ring-based quantum routers
Spin networks are endowed with an Information Transfer Fidelity (ITF), which defines an absolute upper bound on the probability of transmission of an excitation from one spin to another. The ITF is easily computable but the bound can be reached asymptotically in time only under certain conditions. General conditions for attainability of the bound are established and the process of achieving the maximum transfer probability is given a dynamical model, the translation on the torus. The time to reach the maximum probability is estimated using the simultaneous Diophantine approximation, implemented using a variant of the Lenstra-Lenstra-Lov\'asz (LLL) algorithm. For a ring with uniform couplings, the network can be made a metric space by defining a distance (satisfying the triangle inequality) that quantifies the lack of transmission fidelity between two nodes. It is shown that transfer fidelities and transfer times can be improved significantly by means of simple controls taking the form of non-dynamic, spatially localized bias fields, opening up the possibility for intelligent design of spin networks and dynamic routing of information encoded in them, while being more flexible than engineering fixed couplings to favor some transfers, and less demanding than control schemes requiring fast dynamic controls
Giving Leads to Happiness in Young Children
Evolutionary models of cooperation require proximate mechanisms that sustain prosociality despite inherent costs to individuals. The “warm glow” that often follows prosocial acts could provide one such mechanism; if so, these emotional benefits may be observable very early in development. Consistent with this hypothesis, the present study finds that before the age of two, toddlers exhibit greater happiness when giving treats to others than receiving treats themselves. Further, children are happier after engaging in costly giving – forfeiting their own resources – than when giving the same treat at no cost. By documenting the emotionally rewarding properties of costly prosocial behavior among toddlers, this research provides initial support for the claim that experiencing positive emotions when giving to others is a proximate mechanism for human cooperation
Adaptive Evolution of Cooperation through Darwinian Dynamics in Public Goods Games
The linear or threshold Public Goods game (PGG) is extensively accepted as a paradigmatic model to approach the evolution of cooperation in social dilemmas. Here we explore the significant effect of nonlinearity of the structures of public goods on the evolution of cooperation within the well-mixed population by adopting Darwinian dynamics, which simultaneously consider the evolution of populations and strategies on a continuous adaptive landscape, and extend the concept of evolutionarily stable strategy (ESS) as a coalition of strategies that is both convergent-stable and resistant to invasion. Results show (i) that in the linear PGG contributing nothing is an ESS, which contradicts experimental data, (ii) that in the threshold PGG contributing the threshold value is a fragile ESS, which cannot resist the invasion of contributing nothing, and (iii) that there exists a robust ESS of contributing more than half in the sigmoid PGG if the return rate is relatively high. This work reveals the significant effect of the nonlinearity of the structures of public goods on the evolution of cooperation, and suggests that, compared with the linear or threshold PGG, the sigmoid PGG might be a more proper model for the evolution of cooperation within the well-mixed population
The use of the SAEM algorithm in MONOLIX software for estimation of population pharmacokinetic-pharmacodynamic-viral dynamics parameters of maraviroc in asymptomatic HIV subjects
Using simulated viral load data for a given maraviroc monotherapy study design, the feasibility of different algorithms to perform parameter estimation for a pharmacokinetic-pharmacodynamic-viral dynamics (PKPD-VD) model was assessed. The assessed algorithms are the first-order conditional estimation method with interaction (FOCEI) implemented in NONMEM VI and the SAEM algorithm implemented in MONOLIX version 2.4. Simulated data were also used to test if an effect compartment and/or a lag time could be distinguished to describe an observed delay in onset of viral inhibition using SAEM. The preferred model was then used to describe the observed maraviroc monotherapy plasma concentration and viral load data using SAEM. In this last step, three modelling approaches were compared; (i) sequential PKPD-VD with fixed individual Empirical Bayesian Estimates (EBE) for PK, (ii) sequential PKPD-VD with fixed population PK parameters and including concentrations, and (iii) simultaneous PKPD-VD. Using FOCEI, many convergence problems (56%) were experienced with fitting the sequential PKPD-VD model to the simulated data. For the sequential modelling approach, SAEM (with default settings) took less time to generate population and individual estimates including diagnostics than with FOCEI without diagnostics. For the given maraviroc monotherapy sampling design, it was difficult to separate the viral dynamics system delay from a pharmacokinetic distributional delay or delay due to receptor binding and subsequent cellular signalling. The preferred model included a viral load lag time without inter-individual variability. Parameter estimates from the SAEM analysis of observed data were comparable among the three modelling approaches. For the sequential methods, computation time is approximately 25% less when fixing individual EBE of PK parameters with omission of the concentration data compared with fixed population PK parameters and retention of concentration data in the PD-VD estimation step. Computation times were similar for the sequential method with fixed population PK parameters and the simultaneous PKPD-VD modelling approach. The current analysis demonstrated that the SAEM algorithm in MONOLIX is useful for fitting complex mechanistic models requiring multiple differential equations. The SAEM algorithm allowed simultaneous estimation of PKPD and viral dynamics parameters, as well as investigation of different model sub-components during the model building process. This was not possible with the FOCEI method (NONMEM version VI or below). SAEM provides a more feasible alternative to FOCEI when facing lengthy computation times and convergence problems with complex models
Antidepressant use and risk of epilepsy and seizures in people aged 20 to 64 years: cohort study using a primary care database
Background: Epilepsy is a serious condition which can profoundly affect an individual’s life. While there is some evidence to suggest an association between antidepressant use and epilepsy and seizures it is conflicting and not conclusive. Antidepressant prescribing is rising in the UK so it is important to quantify absolute risks with individual antidepressants to enable shared decision making with patients. In this study we assess and quantify the association between antidepressant treatment and the risk of epilepsy and seizures in a large cohort of patients diagnosed with depression aged between 20 and 64 years.
Methods: Data on 238,963 patients with a diagnosis of depression aged 20 to 64 from 687 UK practices were extracted from the QResearch primary care database. We used Cox’s proportional hazards to analyse the time to the first recorded diagnosis of epilepsy/seizures, excluding patients with a prior history and estimated hazard ratios for antidepressant exposure adjusting for potential confounding variables.
Results: In the first 5 years of follow-up, 878 (0.37 %) patients had a first diagnosis of epilepsy/seizures with the hazard ratio (HR) significantly increased (P < 0.01) for all antidepressant drug classes and for 8 of the 11 most commonly prescribed drugs. The highest risks (in the first 5 years) compared with no treatment were for trazodone (HR 5.41, 95 % confidence interval (CI) 3.05 to 9.61, number needed to harm (NNH) 65), lofepramine (HR 3.09, 95 % CI 1.73 to 5.50, NNH 138), venlafaxine (HR 2.84, 95 % CI 1.97 to 4.08, NNH 156) and combined antidepressant treatment (HR 2.73, 95 % CI 1.52 to 4.91, NNH 166).
Conclusions: Risk of epilepsy/seizures is significantly increased for all classes of antidepressant. There is a need for individual risk-benefit assessments in patients being considered for antidepressant treatment, especially those with ongoing mild depression or with additional risk factors. Residual confounding and indication bias may influence our results, so confirmation may be required from additional studies
- …