1,152 research outputs found

    Evolution of Cooperation and Coordination in a Dynamically Networked Society

    Get PDF
    Situations of conflict giving rise to social dilemmas are widespread in society and game theory is one major way in which they can be investigated. Starting from the observation that individuals in society interact through networks of acquaintances, we model the co-evolution of the agents' strategies and of the social network itself using two prototypical games, the Prisoner's Dilemma and the Stag Hunt. Allowing agents to dismiss ties and establish new ones, we find that cooperation and coordination can be achieved through the self-organization of the social network, a result that is non-trivial, especially in the Prisoner's Dilemma case. The evolution and stability of cooperation implies the condensation of agents exploiting particular game strategies into strong and stable clusters which are more densely connected, even in the more difficult case of the Prisoner's Dilemma.Comment: 18 pages, 14 figures. to appea

    Mesoscopic structure conditions the emergence of cooperation on social networks

    Get PDF
    We study the evolutionary Prisoner's Dilemma on two social networks obtained from actual relational data. We find very different cooperation levels on each of them that can not be easily understood in terms of global statistical properties of both networks. We claim that the result can be understood at the mesoscopic scale, by studying the community structure of the networks. We explain the dependence of the cooperation level on the temptation parameter in terms of the internal structure of the communities and their interconnections. We then test our results on community-structured, specifically designed artificial networks, finding perfect agreement with the observations in the real networks. Our results support the conclusion that studies of evolutionary games on model networks and their interpretation in terms of global properties may not be sufficient to study specific, real social systems. In addition, the community perspective may be helpful to interpret the origin and behavior of existing networks as well as to design structures that show resilient cooperative behavior.Comment: Largely improved version, includes an artificial network model that fully confirms the explanation of the results in terms of inter- and intra-community structur

    Resolution of the stochastic strategy spatial prisoner's dilemma by means of particle swarm optimization

    Get PDF
    We study the evolution of cooperation among selfish individuals in the stochastic strategy spatial prisoner's dilemma game. We equip players with the particle swarm optimization technique, and find that it may lead to highly cooperative states even if the temptations to defect are strong. The concept of particle swarm optimization was originally introduced within a simple model of social dynamics that can describe the formation of a swarm, i.e., analogous to a swarm of bees searching for a food source. Essentially, particle swarm optimization foresees changes in the velocity profile of each player, such that the best locations are targeted and eventually occupied. In our case, each player keeps track of the highest payoff attained within a local topological neighborhood and its individual highest payoff. Thus, players make use of their own memory that keeps score of the most profitable strategy in previous actions, as well as use of the knowledge gained by the swarm as a whole, to find the best available strategy for themselves and the society. Following extensive simulations of this setup, we find a significant increase in the level of cooperation for a wide range of parameters, and also a full resolution of the prisoner's dilemma. We also demonstrate extreme efficiency of the optimization algorithm when dealing with environments that strongly favor the proliferation of defection, which in turn suggests that swarming could be an important phenomenon by means of which cooperation can be sustained even under highly unfavorable conditions. We thus present an alternative way of understanding the evolution of cooperative behavior and its ubiquitous presence in nature, and we hope that this study will be inspirational for future efforts aimed in this direction.Comment: 12 pages, 4 figures; accepted for publication in PLoS ON

    Different reactions to adverse neighborhoods in games of cooperation

    Get PDF
    In social dilemmas, cooperation among randomly interacting individuals is often difficult to achieve. The situation changes if interactions take place in a network where the network structure jointly evolves with the behavioral strategies of the interacting individuals. In particular, cooperation can be stabilized if individuals tend to cut interaction links when facing adverse neighborhoods. Here we consider two different types of reaction to adverse neighborhoods, and all possible mixtures between these reactions. When faced with a gloomy outlook, players can either choose to cut and rewire some of their links to other individuals, or they can migrate to another location and establish new links in the new local neighborhood. We find that in general local rewiring is more favorable for the evolution of cooperation than emigration from adverse neighborhoods. Rewiring helps to maintain the diversity in the degree distribution of players and favors the spontaneous emergence of cooperative clusters. Both properties are known to favor the evolution of cooperation on networks. Interestingly, a mixture of migration and rewiring is even more favorable for the evolution of cooperation than rewiring on its own. While most models only consider a single type of reaction to adverse neighborhoods, the coexistence of several such reactions may actually be an optimal setting for the evolution of cooperation.Comment: 12 pages, 5 figures; accepted for publication in PLoS ON

    Orangutan information broadcast via consonant-like and vowel-like calls breaches mathematical models of linguistic evolution

    Get PDF
    The origin of language is one of the most significant evolutionary milestones of life on Earth, but one of the most persevering scientific unknowns. Two decades ago, game theorists and mathematicians predicted that the first words and grammar emerged as a response to transmission errors and information loss in language’s precursor system, however, empirical proof is lacking. Here, we assessed information loss in proto-consonants and proto-vowels in human pre-linguistic ancestors as proxied by orangutan consonant-like and vowel-like calls that compose syllable-like combinations. We played-back and re-recorded calls at increasing distances across a structurally complex habitat (i.e. adverse to sound transmission). Consonant-like and vowel-like calls degraded acoustically over distance, but no information loss was detected regarding three distinct classes of information (viz. individual ID, context and population ID). Our results refute prevailing mathematical predictions and herald a turning point in language evolution theory and heuristics. Namely, explaining how the vocal-verbal continuum was crossed in the hominid family will benefit from future mathematical and computational models that, in order to enjoy empirical validity and superior explanatory power, will be informed by great ape behavior and repertoire

    Lizards Cooperatively Tunnel to Construct a Long-Term Home for Family Members

    Get PDF
    Constructing a home to protect offspring while they mature is common in many vertebrate groups, but has not previously been reported in lizards. Here we provide the first example of a lizard that constructs a long-term home for family members, and a rare case of lizards behaving cooperatively. The great desert skink, Liopholis kintorei from Central Australia, constructs an elaborate multi-tunnelled burrow that can be continuously occupied for up to 7 years. Multiple generations participate in construction and maintenance of burrows. Parental assignments based on DNA analysis show that immature individuals within the same burrow were mostly full siblings, even when several age cohorts were present. Parents were always captured at burrows containing their offspring, and females were only detected breeding with the same male both within- and across seasons. Consequently, the individual investments made to construct or maintain a burrow system benefit their own offspring, or siblings, over several breeding seasons

    Optimal interdependence between networks for the evolution of cooperation

    Get PDF
    Recent research has identified interactions between networks as crucial for the outcome of evolutionary games taking place on them. While the consensus is that interdependence does promote cooperation by means of organizational complexity and enhanced reciprocity that is out of reach on isolated networks, we here address the question just how much interdependence there should be. Intuitively, one might assume the more the better. However, we show that in fact only an intermediate density of sufficiently strong interactions between networks warrants an optimal resolution of social dilemmas. This is due to an intricate interplay between the heterogeneity that causes an asymmetric strategy flow because of the additional links between the networks, and the independent formation of cooperative patterns on each individual network. Presented results are robust to variations of the strategy updating rule, the topology of interdependent networks, and the governing social dilemma, thus suggesting a high degree of universality

    Heterogeneous Aspirations Promote Cooperation in the Prisoner's Dilemma Game

    Get PDF
    To be the fittest is central to proliferation in evolutionary games. Individuals thus adopt the strategies of better performing players in the hope of successful reproduction. In structured populations the array of those that are eligible to act as strategy sources is bounded to the immediate neighbors of each individual. But which one of these strategy sources should potentially be copied? Previous research dealt with this question either by selecting the fittest or by selecting one player uniformly at random. Here we introduce a parameter that interpolates between these two extreme options. Setting equal to zero returns the random selection of the opponent, while positive favor the fitter players. In addition, we divide the population into two groups. Players from group select their opponents as dictated by the parameter , while players from group do so randomly irrespective of . We denote the fraction of players contained in groups and by and , respectively. The two parameters and allow us to analyze in detail how aspirations in the context of the prisoner's dilemma game influence the evolution of cooperation. We find that for sufficiently positive values of there exist a robust intermediate for which cooperation thrives best. The robustness of this observation is tested against different levels of uncertainty in the strategy adoption process and for different interaction networks. We also provide complete phase diagrams depicting the dependence of the impact of and for different values of , and contrast the validity of our conclusions by means of an alternative model where individual aspiration levels are subject to evolution as well. Our study indicates that heterogeneity in aspirations may be key for the sustainability of cooperation in structured populations

    Effort Perception is Made More Accurate with More Effort and When Cooperating with Slackers

    Get PDF
    Recent research on the conditions that facilitate cooperation is limited by a factor that has yet to be established: the accuracy of effort perception. Accuracy matters because the fitness of cooperative strategies depends not just on being able to perceive others' effort but to perceive their true effort. In an experiment using a novel effort-tracker methodology, we calculate the accuracy of human effort perceptions and show that accuracy is boosted by more absolute effort (regardless of relative effort) and when cooperating with a "slacker" rather than an "altruist". A formal model shows how such an effort-prober strategy is likely to be an adaptive solution because it gives would-be collaborators information on when to abort ventures that are not in their interest and opt for ones that are. This serves as a precautionary measure against systematic exploitation by extortionist strategies and a descent into uncooperativeness. As such, it is likely that humans have a bias to minimize mistakes in effort perception that would commit them to a disadvantageous effort-reward relationship. Overall we find support for the idea that humans have evolved smart effort detection systems that are made more accurate by those contexts most relevant for cooperative tasks

    Lhermitte-Duclos disease presenting with positron emission tomography-magnetic resonance fusion imaging: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Lhermitte-Duclos disease or dysplastic gangliocytoma of the cerebellum is an extremely rare tumor. It is a slowly enlarging mass within the cerebellar cortex. The majority of cases are diagnosed in the third or fourth decade of life.</p> <p>Case presentation</p> <p>We report the case of a 37-year-old Caucasian woman who underwent positron emission tomography-computed tomography with fluorine-18-fluorodeoxyglucose for evaluation of a solitary lung node. No pathological uptake was detected in the solitary lung node but the positron emission tomography-computed tomography of her brain showed intense tracer uptake, suggestive of a malignant neoplasm, in a mass in her left cerebellar lobe. Our patient had experienced two years of occipital headache and movement disorder. Subsequently, magnetic resonance imaging was performed with contrast agent administration, showing a large subtentorial mass in her left cerebellar hemisphere, with compression and dislocation of the fourth ventricle. Metabolic data provided by positron emission tomography and morphological magnetic resonance imaging views were fused in post-processing, allowing a diagnosis of dysplastic gangliocytoma with increased glucose metabolism. Total resection of the tumor was performed and histological examination confirmed the diagnosis of Lhermitte-Duclos disease.</p> <p>Conclusions</p> <p>Our case indicates that increased uptake of fluorine-18-fluorodeoxyglucose may be misinterpreted as a neoplastic process in the evaluation of patients with Lhermitte-Duclos disease, but supports the usefulness of integrated positron emission tomography-magnetic resonance imaging in the exact pathophysiologic explanation of this disease and in making the correct diagnosis. However, an accurate physical examination and exact knowledge of clinical data is of the utmost importance.</p
    corecore