6,193 research outputs found

    Determination of jet fuel thermal deposit rate using a modified JFTOT

    Get PDF
    Three fuels having different breakpoint temperatures were studied in the modified jet fuel thermal oxidation tester. The lower stability fuel with a breakpoint of 240 C was first stressed at a constant temperature. After repeating this procedure at several different temperatures, an Arrehenius plot was drawn from the data. The correlation coefficient and the energy of activation were calculated to be 0.97 and 8 kcal/mole respectively. Two other fuels having breakpoint temperatures of 271 C and 285 C were also studied in a similar manner. A straight line was drawn through the data at a slope equivalent to the slope of the lower stability fuel. The deposit formation rates for the three fuels were determined at 260 C, and a relative deposit formation rate at this temperature was calculated and plotted as a function of the individual fuel's breakpoint temperatures

    Simultaneous Spin-Charge Relaxation in Double Quantum Dots

    Full text link
    We investigate phonon-induced spin and charge relaxation mediated by spin-orbit and hyperfine interactions for a single electron confined within a double quantum dot. A simple toy model incorporating both direct decay to the ground state of the double dot and indirect decay via an intermediate excited state yields an electron spin relaxation rate that varies non-monotonically with the detuning between the dots. We confirm this model with experiments performed on a GaAs double dot, demonstrating that the relaxation rate exhibits the expected detuning dependence and can be electrically tuned over several orders of magnitude. Our analysis suggests that spin-orbit mediated relaxation via phonons serves as the dominant mechanism through which the double-dot electron spin-flip rate varies with detuning.Comment: 5 pages, 3 figures, Supplemental Material (2 pages, 2 figures

    More functions of torpor and their roles in a changing world

    Get PDF
    Increased winter survival by reducing energy expenditure in adult animals is often viewed as the primary function of torpor. However, torpor has many other functions that ultimately increase the survival of heterothermic mammals and birds. In this review, we summarize new findings revealing that animals use torpor to cope with the conditions during and after natural disasters, including fires, storms, and heat waves. Furthermore, we suggest that torpor, which also prolongs longevity and was likely crucial for survival of mammals during the time of the dinosaur extinctions, will be advantageous in a changing world. Climate change is assumed to lead to an increase in the occurrence and intensity of climatic disasters, such as those listed above and also abnormal floods, droughts, and extreme temperatures. The opportunistic use of torpor, found in many heterothermic species, will likely enhance survival of these challenges, because these species can reduce energy and foraging requirements. However, many strictly seasonal hibernators will likely face the negative consequences of the predicted increase in temperature, such as range contraction. Overall, available data suggest that opportunistic heterotherms with their flexible energy requirements have an adaptive advantage over homeotherms in response to unpredictable conditions

    A new cue for torpor induction: charcoal, ash and smoke

    Get PDF
    Recent work has shown that the use of torpor for energy conservation increases after forest fires in heterothermic mammals, probably in response to the reduction of food. However, the specific environmental cues for this increased torpor expression remain unknown. It is possible that smoke and the novel substrate of charcoal and ash act as signals for an impending period of starvation requiring torpor. We therefore tested the hypothesis that the combined cues of smoke, a charcoal/ash substrate and food shortage will enhance torpor expression in a small forest-dwelling marsupial, the yellowfooted antechinus (Antechinus flavipes), because like other animals that live in fire-prone habitats they must effectively respond to fires to ensure survival. Activity and body temperature patterns of individuals in outdoor aviaries were measured under natural environmental conditions. All individuals were strictly nocturnal, but diurnal activity was observed shortly after smoke exposure. Overall, torpor in females was longer and deeper than that in males. Interestingly, while both males and females increased daily torpor duration during food restriction by >2-fold as anticipated, a combination of food restriction and smoke exposure on a charcoal/ash substrate further increased daily torpor duration by ∼2-fold in both sexes. These data show that this combination of cues for torpor induction is stronger than food shortage on its own. Our study provides significant new information on how a small forest-dwelling mammal responds to fire cues during and immediately after a fire and identifies a new, not previously recognised, regulatory mechanism for thermal biology in mammals

    Physiological and behavioral responses of an arboreal mammal to smoke and charcoal-ash substrate.

    Get PDF
    The recent observation that torpor plays a key role in post-fire survival has been mainly attributed to the reduced food resources after fires. However, some of these adjustments can be facilitated or amplified by environmental changes associated with fires, such as the presence of a charcoal-ash substrate. In a previous experiment on a small terrestrial mammal the presence of charcoal and ash linked to food restriction intensified torpor use. However, whether fire cues also act as a trigger of torpor use when food is available and whether they affect other species including arboreal mammals remains elusive. To evaluate whether smoke, charcoal and ash can act as proximate triggers for an impending period of food shortage requiring torpor for mammals, we conducted an experiment on captive sugar gliders (Petaurus breviceps), a small, arboreal marsupial, housed in outside aviaries under different food regimes and natural ambient conditions. When food was available, fire simulation via exposure to smoke and charcoal-ash substrate caused a significant earlier start of activity and a significant decrease in resting body temperature. In contrast, only when food was withheld, did smoke and charcoal-ash exposure significantly enhance torpor depth and duration. Thus, our study not only provides evidence that fire simulation does affect arboreal and terrestrial species similarly, but also suggests that smoke and ash were presumably selected as cues for torpor induction because they indicate an impending lack of food

    An unsupervised learning approach to identifying blocking events: the case of European summer

    Get PDF
    Atmospheric blocking events are mid-latitude weather patterns, which obstruct the usual path of the polar jet streams. They are often associated with heat waves in summer and cold snaps in winter. Despite being central features of mid-latitude synoptic-scale weather, there is no well-defined historical dataset of blocking events. Various blocking indices (BIs) have thus been suggested for automatically identifying blocking events in observational and in climate model data. However, BIs show significant regional and seasonal differences so that several indices are typically applied in combination to ensure scientific robustness. Here, we introduce a new BI using self-organizing maps (SOMs), an unsupervised machine learning approach, and compare its detection skill to some of the most widely applied BIs. To enable this intercomparison, we first create a new ground truth time series classification of European blocking based on expert judgement. We then demonstrate that our method (SOM-BI) has several key advantages over previous BIs because it exploits all of the spatial information provided in the input data and reduces the dependence on arbitrary thresholds. Using ERA5 reanalysis data (1979–2019), we find that the SOM-BI identifies blocking events with a higher precision and recall than other BIs. In particular, SOM-BI already performs well using only around 20 years of training data so that observational records are long enough to train our new method. We present case studies of the 2003 and 2019 European heat waves and highlight that well-defined groups of SOM nodes can be an effective tool to diagnose such weather events, although the domain-based approach can still lead to errors in the identification of certain events in a fashion similar to the other BIs. We further test the red blocking detection skill of SOM-BI depending on the meteorological variable used to study blocking, including geopotential height, sea level pressure and four variables related to potential vorticity, and the 500 hPa geopotential height anomaly field provides the best results with our new approach. We also demonstrate how SOM-BI can be used to identify different types of blocking events and their associated trends. Finally, we evaluate the SOM-BI performance on around 100 years of climate model data from a pre-industrial simulation with the new UK Earth System Model (UKESM1-0-LL). For the model data, all blocking detection methods have lower skill than for the ERA5 reanalysis, but SOM-BI performs noticeably better than the conventional indices. Overall, our results demonstrate the significant potential for unsupervised learning to complement the study of blocking events in both reanalysis and climate modelling contexts

    Survivable hypothermia or torpor in a wild-living rat: rare insights broaden our understanding of endothermic physiology

    Get PDF
    Maintaining a high and stable body temperature as observed in endothermic mammals and birds is energetically costly. Thus, it is not surprising that we discover more and more heterothermic species that can reduce their energetic needs during energetic bottlenecks through the use of torpor. However, not all heterothermic animals use torpor on a regular basis. Torpor may also be important to an individual’s probability of survival, and hence fitness, when used infrequently. We here report the observation of a single, ~ 5.5 h long hypothermic bout with a decrease in body temperature by 12 °C in the native Australian bush rat (Rattus fuscipes). Our data suggest that bush rats are able to rewarm from a body temperature of 24 °C, albeit with a rewarming rate lower than that expected on the basis of their body mass. Heterothermy, i.e. the ability to withstand and overcome periods of reduced body temperature, is assumed to be an evolutionarily ancestral (plesiomorphic) trait. We thus argue that such rare hypothermic events in species that otherwise appear to be strictly homeothermic could be heterothermic rudiments, i.e. a less derived form of torpor with limited capacity for rewarming. Importantly, observations of rare and extreme thermoregulatory responses by wild animals are more likely to be discovered with long-term data sets and may not only provide valuable insight about the physiological capability of a population, but can also help us to understand the constraints and evolutionary pathways of different phenologies

    Hibernation in pygmy lorises (Nycticebus pygmaeus)–what does it mean?

    Get PDF
    Torpor use in primates appeared to be restricted to African species and was only recently discovered in a species from Asia, the pygmy loris (Nycticebus pygmaeus). This finding has considerable implications for our perception of torpor in this mammal group and demonstrates that torpor is probably more widespread in mammals than commonly thought. This article summarizes the current knowledge on the use of torpor in the pygmy loris and places it into the context of ongoing research on this topic

    An oversimplification of physiological principles leads to flawed macroecological analyses

    Get PDF
    Macrophysiological analyses are useful to predict current and future range limits and improve our understanding of endotherm macroecology, but such analyses too often rely on oversimplifications of endothermic thermoregulatory and energetic physiology, which lessens their applicability. We detail some of the major issues with macrophysiological analyses based on the classic Scholander–Irving model of endotherm energetics in the hope that it will encourage other research teams to more appropriately integrate physiology into macroecological analyses
    • …
    corecore