9 research outputs found

    Micro-confinement of bacteria into w/o emulsion droplets for rapid detection and enumeration

    Get PDF
    International audienceToday, rapid detection and identification of bacteria in microbiological diagnosis is a major issue. Reference methods usually rely on growth of microorganisms, with the drawback of lengthy time-to-result. The method provides global information on a clonal population that is known to be inhomogeneous relative to metabolic states and activities. Therefore, there may be a significant advantage of methods that allow characterisation of individual bacteria from a large population, both for test time reduction and the clinical value of the characterisation. We report here a method for rapid detection and real-time monitoring of the metabolic activities of single bacteria. Water-in-oil emulsions were used to encapsulate single Escherichia coli cells into picolitre (pL)-sized microreactor droplets. The glucuronidase activity in each droplet was monitored using the fluorogenic reporter molecule MUG (4-methylumbelliferyl- - d-glucuronide) coupled to time-lapse fluorescence imaging of the droplets. Such bacterial confinement provides several major advantages. (1) Enzymatic activities of a large number of single bacterium-containing droplet could be monitored simultaneously, allowing the full characterisation of metabolic heterogeneity in a clonal population. We monitored glucuronidase enzymatic activity and growth over ∼200 single bacteria over a 24-h period. (2) Micro-confinement of cells in small volumes allows rapid accumulation of the fluorescent metabolite, hence decreasing the detection time. Independent of the initial concentration of bacteria in the sample, detection of the presence of bacteria could be achieved in less than 2 h. (3) Considering the random distribution of bacteria in droplets, this method allowed rapid and reliable enumeration of bacteria in the initial sample. Overall, the results of this study showed that confinement of bacterial cells increased the effective concentration of fluorescent metabolites leading to rapid (2 h) detection of the fluorescent metabolites, thus significantly reducing time to numeration

    Direct identification of clinically relevant bacterial and yeast microcolonies and macrocolonies on solid culture media by Raman spectroscopy

    No full text
    International audienceDecreasing turnaround time is a paramount objective in clinical diagnosis. We evaluated the discrimination power of Raman spectroscopy when analyzing colonies from 80 strains belonging to nine bacterial and one yeast species directly on solid culture medium after 24-h (macrocolonies) and 6-h (microcolonies) incubation. This approach, that minimizes sample preparation and culture time, would allow resuming culture after identification to perform downstream antibiotic susceptibility testing. Correct identification rates measured for macrocolonies and microcolonies reached 94.1% and 91.5%, respectively, in a leave-one-strain-out cross-validation mode without any correction for possible medium interference. Large spectral differences were observed between macrocolonies and microcolonies, that were attributed to true biological differences. Our results, conducted on a very diversified panel of species and strains, were obtained by using simple and robust sample preparation and preprocessing procedures, while still confirming published results obtained by using more complex elaborated protocols. Instrumentation is simplified by the use of 532-nm laser excitation yielding a Raman signal in the visible range. It is, to our knowledge, the first side-by-side full classification study of microorganisms in the exponential and stationary phases confirming the excellent performance of Raman spectroscopy for early species-level identification of microorganisms directly from an agar culture

    Fast Raman single bacteria identification: toward a routine in-vitro diagnostic

    No full text
    Conference on Biophotonics - Photonic Solutions for Better Health Care V, Brussels, BELGIUM, APR 04-07, 2016International audienceTimely microbiological results are essential to allow clinicians to optimize the prescribed treatment, ideally at the initial stage of the therapeutic process. Several approaches have been proposed to solve this issue and to provide the microbiological result in a few hours directly from the sample such as molecular biology. However fast and sensitive those methods are not based on single phenotypic information which presents several drawbacks and limitations. Optical methods have the advantage to allow single-cell sensitivity and to probe the phenotype of measured cells. Here we present a process and a prototype that allow automated single bacteria phenotypic analysis. This prototype is based on the use of Digital In-line Holography techniques combined with a specially designed Raman spectrometer using a dedicated device to capture bacteria. The localization of single-cell is finely determined by using holograms and a proper propagation kernel. Holographic images are also used to analyze bacteria in the sample to sort potential pathogens from flora dwelling species or other biological particles. This accurate localization enables the use of a small confocal volume adapted to the measurement of single-cell. Along with the confocal volume adaptation, we also have modified every components of the spectrometer to optimize single-bacteria Raman measurements. This optimization allowed us to acquire informative single-cell spectra using an integration time of 0.5s only. Identification results obtained with this prototype are presented based on a 65144 Raman spectra database acquired automatically on 48 bacteria strains belonging to 8 species
    corecore