109 research outputs found

    A Basal Sauropodomorph (Dinosauria: Saurischia) from the Ischigualasto Formation (Triassic, Carnian) and the Early Evolution of Sauropodomorpha

    Get PDF
    BACKGROUND: The earliest dinosaurs are from the early Late Triassic (Carnian) of South America. By the Carnian the main clades Saurischia and Ornithischia were already established, and the presence of the most primitive known sauropodomorph Saturnalia suggests also that Saurischia had already diverged into Theropoda and Sauropodomorpha. Knowledge of Carnian sauropodomorphs has been restricted to this single species. METHODOLOGY/PRINCIPAL FINDINGS: We describe a new small sauropodomorph dinosaur from the Ischigualsto Formation (Carnian) in northwest Argentina, Panphagia protos gen. et sp. nov., on the basis of a partial skeleton. The genus and species are characterized by an anteroposteriorly elongated fossa on the base of the anteroventral process of the nasal; wide lateral flange on the quadrate with a large foramen; deep groove on the lateral surface of the lower jaw surrounded by prominent dorsal and ventral ridges; bifurcated posteroventral process of the dentary; long retroarticular process transversally wider than the articular area for the quadrate; oval scars on the lateral surface of the posterior border of the centra of cervical vertebrae; distinct prominences on the neural arc of the anterior cervical vertebra; distal end of the scapular blade nearly three times wider than the neck; scapular blade with an expanded posterodistal corner; and medial lamina of brevis fossa twice as wide as the iliac spine. CONCLUSIONS/SIGNIFICANCE: We regard Panphagia as the most basal sauropodomorph, which shares the following apomorphies with Saturnalia and more derived sauropodomorphs: basally constricted crowns; lanceolate crowns; teeth of the anterior quarter of the dentary higher than the others; and short posterolateral flange of distal tibia. The presence of Panphagia at the base of the early Carnian Ischigualasto Formation suggests an earlier origin of Sauropodomorpha during the Middle Triassic

    New Forearm Elements Discovered of Holotype Specimen Australovenator wintonensis from Winton, Queensland, Australia

    Get PDF
    New skeletal elements are reported of the holotype specimen Australovenator wintonensis, from the type locality, near Winton, central western Queensland. New elements include left and right humeri, right radius, right radiale, right distal carpal 1, near complete right metacarpal I, left manual phalanx II-1, left manual phalanx II-2, near complete left manual phalanx II-3 and a left manual phalanx III-3. These new elements combined with those previously described are compared against other neovenatorids

    Histological evidence for a supraspinous ligament in sauropod dinosaurs

    Get PDF
    Supraspinous ossified rods have been reported in the sacra of some derived sauropod dinosaurs. Although different hypotheses have been proposed to explain the origin ofthis structure, histological evidence has never been provided to support or reject any of them. In order to establish its origin, we analyse and characterize the microstructure of thesupraspinous rod of two sauropod dinosaurs from the Upper Cretaceous of Argentina. The supraspinous ossified rod is almost entirely formed by dense Haversian bone. Remains ofprimary bone consist entirely of an avascular tissue composed of two types of fibre-like structures, which are coarse and longitudinally (parallel to the main axis of the element) oriented. These structures are differentiated on the basis of their optical properties under polarized light. Very thin fibrous strands are also observed in some regions. These small fibres are all oriented parallel to one another but perpendicular to the element main axis. Histological features of the primary bone tissue indicate that the sacral supraspinous rod corresponds to an ossified supraspinous ligament. The formation of this structure appears to have been a non-pathological metaplastic ossification, possibly induced by the continuous tensile forces applied to the element.Fil: Cerda, Ignacio Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación en Paleobiología y Geología; Argentina. Universidad Nacional de Río Negro; ArgentinaFil: Casal, Gabriel. Universidad Nacional de la Patagonia; ArgentinaFil: Martínez, Rubén Darío. Universidad Nacional de la Patagonia ; ArgentinaFil: Ibiricu, Lucio Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Nacional Patagónico; Argentin

    Theropod Fauna from Southern Australia Indicates High Polar Diversity and Climate-Driven Dinosaur Provinciality

    Get PDF
    The Early Cretaceous fauna of Victoria, Australia, provides unique data on the composition of high latitude southern hemisphere dinosaurs. We describe and review theropod dinosaur postcranial remains from the Aptian–Albian Otway and Strzelecki groups, based on at least 37 isolated bones, and more than 90 teeth from the Flat Rocks locality. Several specimens of medium- and large-bodied individuals (estimated up to ∼8.5 metres long) represent allosauroids. Tyrannosauroids are represented by elements indicating medium body sizes (∼3 metres long), likely including the holotype femur of Timimus hermani, and a single cervical vertebra represents a juvenile spinosaurid. Single specimens representing medium- and small-bodied theropods may be referrable to Ceratosauria, Ornithomimosauria, a basal coelurosaur, and at least three taxa within Maniraptora. Thus, nine theropod taxa may have been present. Alternatively, four distinct dorsal vertebrae indicate a minimum of four taxa. However, because most taxa are known from single bones, it is likely that small-bodied theropod diversity remains underestimated. The high abundance of allosauroids and basal coelurosaurs (including tyrannosauroids and possibly ornithomimosaurs), and the relative rarity of ceratosaurs, is strikingly dissimilar to penecontemporaneous dinosaur faunas of Africa and South America, which represent an arid, lower-latitude biome. Similarities between dinosaur faunas of Victoria and the northern continents concern the proportional representatation of higher clades, and may result from the prevailing temperate–polar climate of Australia, especially at high latitudes in Victoria, which is similar to the predominant warm–temperate climate of Laurasia, but distinct from the arid climate zone that covered extensive areas of Gondwana. Most dinosaur groups probably attained a near-cosmopolitan distribution in the Jurassic, prior to fragmentation of the Pangaean supercontinent, and some aspects of the hallmark ‘Gondwanan’ fauna of South America and Africa may therefore reflect climate-driven provinciality, not vicariant evolution driven by continental fragmentation. However, vicariance may still be detected at lower phylogenetic levels

    A new small-bodied azhdarchoid pterosaur from the Lower Cretaceous of England and its implications for pterosaur anatomy, diversity and phylogeny

    Get PDF
    BACKGROUND: Pterosaurs have been known from the Cretaceous sediments of the Isle of Wight (southern England, United Kingdom) since 1870. We describe the three-dimensional pelvic girdle and associated vertebrae of a small near-adult pterodactyloid from the Atherfield Clay Formation (lower Aptian, Lower Cretaceous). Despite acknowledged variation in the pterosaur pelvis, previous studies have not adequately sampled or incorporated pelvic characters into phylogenetic analyses. METHODOLOGY/PRINCIPAL FINDINGS: The new specimen represents the new taxon Vectidraco daisymorrisae gen. et sp. nov., diagnosed by the presence of a concavity posterodorsal to the acetabulum and the form of its postacetabular process on the ilium. Several characters suggest that Vectidraco belongs to Azhdarchoidea. We constructed a pelvis-only phylogenetic analysis to test whether the pterosaur pelvis carries a useful phylogenetic signal. Resolution in recovered trees was poor, but they approximately matched trees recovered from analyses of total evidence. We also added Vectidraco and our pelvic characters to an existing total-evidence matrix for pterosaurs. Both analyses recovered Vectidraco within Azhdarchoidea. CONCLUSIONS/ SIGNIFICANCE: The Lower Cretaceous strata of western Europe have yielded members of several pterosaur lineages, but Aptian pterosaurs from western Europe are rare. With a pelvis length of 40 mm, the new animal would have had a total length of c. 350 mm, and a wingspan of c. 750 mm. Barremian and Aptian pterodactyloids from western Europe show that small-bodied azhdarchoids lived alongside ornithocheirids and istiodactylids. This assemblage is similar in terms of which lineages are represented to the coeval beds of Liaoning, China; however, the number of species and specimens present at Liaoning is much higher. While the general phylogenetic composition of western European and Chinese communities appear to have been approximately similar, the differences may be due to different palaeoenvironmental and depositional settings. The western Europe pterodactyloid record may therefore be artificially low in diversity due to preservational factors

    The Anatomy of Asilisaurus kongwe, a Dinosauriform from the Lifua Member of the Manda Beds (~Middle Triassic) of Africa

    Get PDF
    The diagnosis of Dinosauria and interrelationships of the earliest dinosaurs relies on careful documentation of the anatomy of their closest relatives. These close relatives, or dinosaur “precursors,” are typically only documented by a handful of fossils from across Pangea and nearly all specimens are typically missing important regions (e.g., forelimbs, pelves, skulls) that appear to be important to help resolving the relationships of dinosaurs. Here, we fully describe the known skeletal elements of Asilisaurus kongwe, a dinosauriform from the Middle Triassic Manda Beds of the Ruhuhu Basin of Tanzania. The taxon is known from many disarticulated and partially articulated remains and, most importantly, from a spectacularly preserved associated skeleton of an individual containing much of the skull, pectoral and pelvic girdles, forelimb and hindlimb, and parts of the vertebral column including much of the tail. The unprecedented detail of the anatomy indicates that Asilisaurus kongwe had a unique skull that was short and had both a premaxillary and dentary edentulous margin, but retained a number of character states plesiomorphic for Archosauria, including a crocodylian-like ankle configuration and a rather short foot with well-developed metatarsals I and V. Additionally, character states present across the skeleton of Asilisaurus kongwe suggest it is more closely related to Silesaurus opolensis than to dinosaurs; thus suggesting high homoplasy and parallel trends within Silesauridae and within lineages of early dinosaurs. The anatomy of Asilisaurus kongwe and detailed description of early members of clades found outside Dinosauria are clearly needed to untangle the seemingly complex character evolution of the skeleton within avemetatarsalians.Fil: Nesbitt, Sterling J.. Virginia Polytechnic Institute; Estados UnidosFil: Langer, Max C.. Universidade de Sao Paulo; BrasilFil: Ezcurra, Martin Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; Argentin

    New Information on the Cranial Anatomy of Acrocanthosaurus atokensis and Its Implications for the Phylogeny of Allosauroidea (Dinosauria: Theropoda)

    Get PDF
    Allosauroidea has a contentious taxonomic and systematic history. Within this group of theropod dinosaurs, considerable debate has surrounded the phylogenetic position of the large-bodied allosauroid Acrocanthosaurus atokensis from the Lower Cretaceous Antlers Formation of North America. Several prior analyses recover Acrocanthosaurus atokensis as sister taxon to the smaller-bodied Allosaurus fragilis known from North America and Europe, and others nest Acrocanthosaurus atokensis within Carcharodontosauridae, a large-bodied group of allosauroids that attained a cosmopolitan distribution during the Early Cretaceous.Re-evaluation of a well-preserved skull of Acrocanthosaurus atokensis (NCSM 14345) provides new information regarding the palatal complex and inner surfaces of the skull and mandible. Previously inaccessible internal views and articular surfaces of nearly every element of the skull are described. Twenty-four new morphological characters are identified as variable in Allosauroidea, combined with 153 previously published characters, and evaluated for eighteen terminal taxa. Systematic analysis of this dataset recovers a single most parsimonious topology placing Acrocanthosaurus atokensis as a member of Allosauroidea, in agreement with several recent analyses that nest the taxon well within Carcharodontosauridae.A revised diagnosis of Acrocanthosaurus atokensis finds that the species is distinguished by four primary characters, including: presence of a knob on the lateral surangular shelf; enlarged posterior surangular foramen; supraoccipital protruding as a double-boss posterior to the nuchal crest; and pneumatic recess within the medial surface of the quadrate. Furthermore, the recovered phylogeny more closely agrees with the stratigraphic record than hypotheses that place Acrocanthosaurus atokensis as more closely related to Allosaurus fragilis. Fitch optimization of body size is also more consistent with the placement of Acrocanthosaurus atokensis within a clade of larger carcharodontosaurid taxa than with smaller-bodied taxa near the base of Allosauroidea. This placement of Acrocanthosaurus atokensis supports previous hypotheses of a global carcharodontosaurid radiation during the Early Cretaceous

    Dinosaur Speed Demon: The Caudal Musculature of Carnotaurus sastrei and Implications for the Evolution of South American Abelisaurids

    Get PDF
    In the South American abelisaurids Carnotaurus sastrei, Aucasaurus garridoi, and, to a lesser extent Skorpiovenator bustingorryi, the anterior caudal ribs project at a high dorsolateral inclination and have interlocking lateral tips. This unique morphology facilitated the expansion of the caudal hypaxial musculature at the expense of the epaxial musculature. Distinct ridges on the ventrolateral surfaces of the caudal ribs of Aucasaurus garridoi are interpreted as attachment scars from the intra caudofemoralis/ilio-ischiocaudalis septa, and confirm that the M. caudofemoralis of advanced South American abelisaurids originated from a portion of the caudal ribs. Digital muscle models indicate that, relative to its overall body size, Carnotaurus sastrei had a substantially larger M. caudofemoralis than any other theropod yet studied. In most non-avian theropods, as in many extant sauropsids, the M. caudofemoralis served as the primary femoral retractor muscle during the locomotive power stroke. This large investment in the M. caudofemoralis suggests that Carnotaurus sastrei had the potential for great cursorial abilities, particularly short-burst sprinting. However, the tightly interlocking morphology of the anterior caudal vertebrae implies a reduced ability to make tight turns. Examination of these vertebral traits in evolutionary context reveals a progressive sequence of increasing caudofemoral mass and tail rigidity among the Abelisauridae of South America

    Mass extinctions drove increased global faunal cosmopolitanism on the supercontinent Pangaea

    Get PDF
    Mass extinctions have profoundly impacted the evolution of life through not only reducing taxonomic diversity but also reshaping ecosystems and biogeographic patterns. In particular, they are considered to have driven increased biogeographic cosmopolitanism, but quantitative tests of this hypothesis are rare and have not explicitly incorporated information on evolutionary relationships. Here we quantify faunal cosmopolitanism using a phylogenetic network approach for 891 terrestrial vertebrate species spanning the late Permian through Early Jurassic. This key interval witnessed the Permian–Triassic and Triassic–Jurassic mass extinctions, the onset of fragmentation of the supercontinent Pangaea, and the origins of dinosaurs and many modern vertebrate groups. Our results recover significant increases in global faunal cosmopolitanism following both mass extinctions, driven mainly by new, widespread taxa, leading to homogenous ‘disaster faunas’. Cosmopolitanism subsequently declines in post-recovery communities. These shared patterns in both biotic crises suggest that mass extinctions have predictable influences on animal distribution and may shed light on biodiversity loss in extant ecosystems
    corecore