1,415 research outputs found

    Trends In Science Courses

    Get PDF

    Meaningful learning is the foundation for creativity

    Get PDF
    En este trabajo el autor inicialmente presenta las concepciones de Ausubel y sus propias concepciones de aprendizaje significativo, así como los requisitos para este tipo de aprendizaje. Asimismo, la creatividad es vista como una consecuencia de elevados grados de aprendizaje significativo. El pensamiento creativo se contempla como una extensión del aprendizaje significativo. A continuación, el foco queda en la teoría de educación del autor y en el uso de mapas conceptuales como una herramienta para facilitar el aprendizaje significativo, para ayudar en el trabajo de grupos de investigación y en actividades esenciales para el desarrollo profesional de profesores, para captar y almacenar el conocimiento de expertos, utilizando el aplicativo CmapTools y para resolver problemas complejos enfrentados por instituciones privadas y gubernamentales. El mapeamiento conceptual y este aplicativo son propuestos como notablemente facilitadores en la solución creativa de problemas.In this paper, the author initially presents Ausubel’s and his own conceptions of meaningful learning as well as the requirements for this kind of learning. In addition, creativity is seen as a consequence of high levels of meaningful learning. Creative thinking is seen as an extension of meaningful learning. Then, the focus is on the author’s theory of education and on the use of concept maps as a tool to facilitate meaningful learning, to help in the work of research teams and in essential activities for professional development of teachers, to capture and record expert knowledge, using the software CmapTools, and to solve complex problems faced by private and governmental organizations. Concept mapping and this software are proposed as remarkably facilitative in creative problem solving

    Cmapanalysis: an extensible concept map analysis tool

    Get PDF
    Concept maps are used extensively as an assessment tool, and the literature is abundant with studies on the use of concept maps for assessment and on the assessment of concept maps. The assessment of concept maps can be an arduous process, in particular when assessing a large number of maps. CmapAnalysis is a software tool that facilitates performing various analysis measures on a collection of concept maps. A set of measures that consider size, quality and structure properties of the maps are included. The program is designed to be extensible, allowing users to add their own measures. The program is not intended to replace the individual evaluation of concept maps by teachers and instructors, as it does not capable of “understanding” the content of the maps. It is aimed at researchers who are looking for more general trends and measures across a large number of maps, and who can extend it with their own measures. The output of CmapAnalysis is an Excel spreadsheet that can be further analyzed

    The Apollo Medical Operations Project: Recommendations to Improve Crew Health and Performance for Future Exploration Missions and Lunar Surface Operations

    Get PDF
    Medical requirements for the future Crew Exploration Vehicle (CEV), Lunar Surface Access Module (LSAM), advanced Extravehicular Activity (EVA) suits and Lunar habitat are currently being developed. Crews returning to the lunar surface will construct the lunar habitat and conduct scientific research. Inherent in aggressive surface activities is the potential risk of injury to crewmembers. Physiological responses and the operational environment for short forays during the Apollo lunar missions were studied and documented. Little is known about the operational environment in which crews will live and work and the hardware will be used for long-duration lunar surface operations. Additional information is needed regarding productivity and the events that affect crew function such as a compressed timeline. The Space Medicine Division at the NASA Johnson Space Center (JSC) requested a study in December 2005 to identify Apollo mission issues relevant to medical operations that had impact to crew health and/or performance. The operationally oriented goals of this project were to develop or modify medical requirements for new exploration vehicles and habitats, create a centralized database for future access, and share relevant Apollo information with the multiple entities at NASA and abroad participating in the exploration effort

    Group 2i Isochrysidales produce characteristic alkenones reflecting sea ice distribution

    Get PDF
    Alkenones are biomarkers produced solely by algae in the order Isochrysidales that have been used to reconstruct sea surface temperature (SST) since the 1980s. However, alkenone based SST reconstructions in the northern high latitude oceans show significant bias towards warmer temperatures in core-tops, diverge from other SST proxies in down core records, and are often accompanied by anomalously high relative abundance of the C37 tetra-unsaturated methyl alkenone (%C37:4). Elevated %C37:4 is widely interpreted as an indicator of low sea surface salinity from polar water masses, but its biological source has thus far remained elusive. Here we identify a lineage of Isochrysidales that is responsible for elevated C37:4 methyl alkenone in the northern high latitude oceans through next-generation sequencing and lab-culture experiments. This Isochrysidales lineage co-occurs widely with sea ice in marine environments and is distinct from other known marine alkenone-producers, namely Emiliania huxleyi and Gephyrocapsa oceanica. More importantly, the %C37:4 in seawater filtered particulate organic matter and surface sediments is significantly correlated with annual mean sea ice concentrations. In sediment cores from the Svalbard region, the %C37:4 concentration aligns with the Greenland temperature record and other qualitative regional sea ice records spanning the past 14 kyrs, reflecting sea ice concentrations quantitatively. Our findings imply that %C37:4 is a powerful proxy for reconstructing sea ice conditions in the high latitude oceans on thousand- and, potentially, on million-year timescales.publishedVersio

    Superform formulation for vector-tensor multiplets in conformal supergravity

    Full text link
    The recent papers arXiv:1110.0971 and arXiv:1201.5431 have provided a superfield description for vector-tensor multiplets and their Chern-Simons couplings in 4D N = 2 conformal supergravity. Here we develop a superform formulation for these theories. Furthermore an alternative means of gauging the central charge is given, making use of a deformed vector multiplet, which may be thought of as a variant vector-tensor multiplet. Its Chern-Simons couplings to additional vector multiplets are also constructed. This multiplet together with its Chern-Simons couplings are new results not considered by de Wit et al. in hep-th/9710212.Comment: 28 pages. V2: Typos corrected and references updated; V3: References updated and typo correcte

    The linear multiplet and ectoplasm

    Full text link
    In the framework of the superconformal tensor calculus for 4D N=2 supergravity, locally supersymmetric actions are often constructed using the linear multiplet. We provide a superform formulation for the linear multiplet and derive the corresponding action functional using the ectoplasm method (also known as the superform approach to the construction of supersymmetric invariants). We propose a new locally supersymmetric action which makes use of a deformed linear multiplet. The novel feature of this multiplet is that it corresponds to the case of a gauged central charge using a one-form potential not annihilated by the central charge (unlike the standard N=2 vector multiplet). Such a gauge one-form can be chosen to describe a variant nonlinear vector-tensor multiplet. As a byproduct of our construction, we also find a variant realization of the tensor multiplet in supergravity where one of the auxiliaries is replaced by the field strength of a gauge three-form.Comment: 31 pages; v3: minor corrections and typos fixed, version to appear in JHE

    Structured feedback on students’ concept maps: the proverbial path to learning?

    Get PDF
    Good conceptual knowledge is an essential requirement for health professions students, in that they are required to apply concepts learned in the classroom to a variety of different contexts. However, the use of traditional methods of assessment limits the educator’s ability to correct students’ conceptual knowledge prior to altering the educational context. Concept mapping (CM) is an educational tool for evaluating conceptual knowledge, but little is known about its use in facilitating the development of richer knowledge frameworks. In addition, structured feedback has the potential to develop good conceptual knowledge. The purpose of this study was to use Kinchin’s criteria to assess the impact of structured feedback on the graphical complexity of CM’s by observing the development of richer knowledge frameworks. Fifty-eight physiotherapy students created CM’s targeting the integration of two knowledge domains within a case-based teaching paradigm. Each student received one round of structured feedback that addressed correction, reinforcement, forensic diagnosis, benchmarking, and longitudinal development on their CM’s prior to the final submission. The concept maps were categorized according to Kinchin’s criteria as either Spoke, Chain or Net representations, and then evaluated against defined traits of meaningful learning. The inter-rater reliability of categorizing CM’s was good. Pre-feedback CM’s were predominantly Chain structures (57%), with Net structures appearing least often. There was a significant reduction of the basic Spoke- structured CMs (P = 0.002) and a significant increase of Net-structured maps (P < 0.001) at the final evaluation (post-feedback). Changes in structural complexity of CMs appeared to be indicative of broader knowledge frameworks as assessed against the meaningful learning traits. Feedback on CM’s seemed to have contributed towards improving conceptual knowledge and correcting naive conceptions of related knowledge. Educators in medical education could therefore consider using CM’s to target individual student development

    Spinneret: Aiding Creative Ideation through Non-Obvious Concept Associations

    Full text link
    Mind mapping is a popular way to explore a design space in creative thinking exercises, allowing users to form associations between concepts. Yet, most existing digital tools for mind mapping focus on authoring and organization, with little support for addressing the challenges of mind mapping such as stagnation and design fixation. We present Spinneret, a functional approach to aid mind mapping by providing suggestions based on a knowledge graph. Spinneret uses biased random walks to explore the knowledge graph in the neighborhood of an existing concept node in the mind map, and provides "suggestions" for the user to add to the mind map. A comparative study with a baseline mind-mapping tool reveals that participants created more diverse and distinct concepts with Spinneret, and reported that the suggestions inspired them to think of ideas they would otherwise not have explored.Comment: ACM CHI 202
    corecore