43 research outputs found

    Can ecosystem-based deep-sea fishing be sustained?

    Get PDF
    Can there ever be a truly sustainable deep-sea fishery and if so, where and under what conditions? Ecosystembased fisheries management requires that this question be addressed such that habitat, bycatch species, and targeted fish populations are considered together within an ecosystem context. To this end, we convened the first workshop to develop an ecosystem approach to deep-sea fisheries and to ask whether deep-sea species could be fished sustainably. The workshop participants were able to integrate bycatch information into their framework but found it more difficult to integrate other ecosystem indicators such as habitat characteristics. (First two paragraphs from the Executive Summary

    synaptojanin1 Is Required for Temporal Fidelity of Synaptic Transmission in Hair Cells

    Get PDF
    To faithfully encode mechanosensory information, auditory/vestibular hair cells utilize graded synaptic vesicle (SV) release at specialized ribbon synapses. The molecular basis of SV release and consequent recycling of membrane in hair cells has not been fully explored. Here, we report that comet, a gene identified in an ENU mutagenesis screen for zebrafish larvae with vestibular defects, encodes the lipid phosphatase Synaptojanin 1 (Synj1). Examination of mutant synj1 hair cells revealed basal blebbing near ribbons that was dependent on Cav1.3 calcium channel activity but not mechanotransduction. Synaptojanin has been previously implicated in SV recycling; therefore, we tested synaptic transmission at hair-cell synapses. Recordings of post-synaptic activity in synj1 mutants showed relatively normal spike rates when hair cells were mechanically stimulated for a short period of time at 20 Hz. In contrast, a sharp decline in the rate of firing occurred during prolonged stimulation at 20 Hz or stimulation at a higher frequency of 60 Hz. The decline in spike rate suggested that fewer vesicles were available for release. Consistent with this result, we observed that stimulated mutant hair cells had decreased numbers of tethered and reserve-pool vesicles in comparison to wild-type hair cells. Furthermore, stimulation at 60 Hz impaired phase locking of the postsynaptic activity to the mechanical stimulus. Following prolonged stimulation at 60 Hz, we also found that mutant synj1 hair cells displayed a striking delay in the recovery of spontaneous activity. Collectively, the data suggest that Synj1 is critical for retrieval of membrane in order to maintain the quantity, timing of fusion, and spontaneous release properties of SVs at hair-cell ribbon synapses

    Active zone proteins are dynamically associated with synaptic ribbons in rat pinealocytes

    Get PDF
    Synaptic ribbons (SRs) are prominent organelles that are abundant in the ribbon synapses of sensory neurons where they represent a specialization of the cytomatrix at the active zone (CAZ). SRs occur not only in neurons, but also in neuroendocrine pinealocytes where their function is still obscure. In this study, we report that pinealocyte SRs are associated with CAZ proteins such as Bassoon, Piccolo, CtBP1, Munc13–1, and the motorprotein KIF3A and, therefore, consist of a protein complex that resembles the ribbon complex of retinal and other sensory ribbon synapses. The pinealocyte ribbon complex is biochemically dynamic. Its protein composition changes in favor of Bassoon, Piccolo, and Munc13–1 at night and in favor of KIF3A during the day, whereas CtBP1 is equally present during the night and day. The diurnal dynamics of the ribbon complex persist under constant darkness and decrease after stimulus deprivation of the pineal gland by constant light. Our findings indicate that neuroendocrine pinealocytes possess a protein complex that resembles the CAZ of ribbon synapses in sensory organs and whose dynamics are under circadian regulation

    Structure and Function of the Hair Cell Ribbon Synapse

    Get PDF
    Faithful information transfer at the hair cell afferent synapse requires synaptic transmission to be both reliable and temporally precise. The release of neurotransmitter must exhibit both rapid on and off kinetics to accurately follow acoustic stimuli with a periodicity of 1 ms or less. To ensure such remarkable temporal fidelity, the cochlear hair cell afferent synapse undoubtedly relies on unique cellular and molecular specializations. While the electron microscopy hallmark of the hair cell afferent synapse — the electron-dense synaptic ribbon or synaptic body — has been recognized for decades, dissection of the synapse’s molecular make-up has only just begun. Recent cell physiology studies have added important insights into the synaptic mechanisms underlying fidelity and reliability of sound coding. The presence of the synaptic ribbon links afferent synapses of cochlear and vestibular hair cells to photoreceptors and bipolar neurons of the retina. This review focuses on major advances in understanding the hair cell afferent synapse molecular anatomy and function that have been achieved during the past years

    Primary processes in sensory cells: current advances

    Get PDF

    Aversive training of honey bees in an automated Y-maze

    No full text
    Honeybees have remarkable learning abilities given their small brains, and have thus been established as a powerful model organism for the study of learning and memory. Most of our current knowledge is based on appetitive paradigms, in which a previously neutral stimulus (e.g. a visual, olfactory, or tactile stimulus) is paired with a reward. Here we present a novel apparatus, the yAPIS, for aversive training of walking honey bees. This system consists in 3 arms of equal length and at 120° from each other. Within each arm, colored lights (λ=375, 465 or 520 nm) or odors (here limonene or linalool) can be delivered to provide conditioned stimuli (CS). A metal grid placed on the floor and roof delivers the punishment in the form of mild electric shocks (unconditioned stimulus, US). Our training protocol followed a fully classical procedure, in which the bee was exposed sequentially to a CS paired with shocks (CS+) and to another CS not punished (CS-). Learning performance was measured during a second phase, which took advantage of the Y-shape of the apparatus and of real-time tracking to present the bee with a choice situation, e.g. between the CS+ and the CS-. Bees reliably chose the CS- over the CS+ after only a few training trials with either colors or odors, and retained this memory for at least a day, except for the shorter wavelength (λ=375nm) that produced mixed results. This behavior was largely the result of the bees avoiding the CS+, as no evidence was found for attraction to the CS-. Interestingly, trained bees initially placed in the CS+ spontaneously escaped to a CS- arm if given the opportunity, even though they could never do so during the training. Finally, honey bees trained with compound stimuli (color + odor) later avoided either components of the CS+. Thus, the yAPIS is a fast, versatile and high-throughput way to train honey bees in aversive paradigms. It also opens the door for controlled laboratory experiments investigating bimodal integration and learning, a field that remains in its infancy.publishe

    Complexity and plasticity in honey bee phototactic behaviour

    No full text
    The ability to move towards or away from a light source, namely phototaxis, is essential for a number of species to find the right environmental niche and may have driven the appearance of simple visual systems. In this study we ask if the later evolution of more complex visual systems was accompanied by a sophistication of phototactic behaviour. The honey bee is an ideal model organism to tackle this question, as it has an elaborate visual system, demonstrates exquisite abilities for visual learning and performs phototaxis. Our data suggest that in this insect, phototaxis has wavelength specific properties and is a highly dynamical response including multiple decision steps. In addition, we show that previous experience with a light (through exposure or classical aversive conditioning) modulates the phototactic response. This plasticity is dependent on the wavelength used, with blue being more labile than green or ultraviolet. Wavelength, intensity and past experience are integrated into an overall valence for each light that determines phototactic behaviour in honey bees. Thus, our results support the idea that complex visual systems allow sophisticated phototaxis. Future studies could take advantage of these findings to better understand the neuronal circuits underlying this processing of the visual information.publishe

    Olfactory Strategies in the Defensive Behaviour of Insects

    No full text
    Most animals must defend themselves in order to survive. Defensive behaviour includes detecting predators or intruders, avoiding them by staying low-key or escaping or deterring them away by means of aggressive behaviour, i.e., attacking them. Responses vary across insect species, ranging from individual responses to coordinated group attacks in group-living species. Among different modalities of sensory perception, insects predominantly use the sense of smell to detect predators, intruders, and other threats. Furthermore, social insects, such as honeybees and ants, communicate about danger by means of alarm pheromones. In this review, we focus on how olfaction is put to use by insects in defensive behaviour. We review the knowledge of how chemical signals such as the alarm pheromone are processed in the insect brain. We further discuss future studies for understanding defensive behaviour and the role of olfaction.publishe

    A review of formal objections to Marine Stewardship Council fisheries certifications

    No full text
    The Marine Stewardship Council (MSC) was created as a conservation tool – intended to provide “the best environmental choice in seafood” to consumers and to create positive incentives that would improve the status and management of fisheries. During its 15 years, the MSC, which has an annual budget of close to US$20 million, has attached its logo to more than 170 fisheries. These certifications have not occurred without protest. Despite high costs and difficult procedures, conservation organizations and other groups have filed and paid for 19 formal objections to MSC fisheries certifications. Only one objection has been upheld such that the fishery was not certified. Here, we collate and summarize these objections and the major concerns as they relate to the MSC’s three main principles: sustainability of the target fish stock, low impacts on the ecosystem, and effective, responsive management. An analysis of the formal objections indicates that the MSC’s principles for sustainable fishing are too lenient and discretionary, and allow for overly generous interpretation by third-party certifiers and adjudicators, which means that the MSC label may be misleading both consumers and conservation funders
    corecore