19 research outputs found

    Locating North African microrefugia for mountain tree species from landscape ruggedness and fossil records

    No full text
    International audienceIn order to optimize conservation policies for endangered plant species in North Africa and minimize the investment of the public resources we explore the capacity of a mountain plant species to persist locally in restricted natural areas. Palaeoecological studies have shown that plant species survived major global climate changes within refugia which offered suitable condition for their long term persistence. Our study aims at identifying potential mountains areas which may play the role of modern microrefugia for preserving locally endangered plant species.We analysed the mountain ruggedness of an area in the North-East of the Middle Atlas mountains where a population of an endangered plant species, Cedrus atlantica, is isolated today around lake Tameda. In addition, we collected a sediment core in the lake to investigate the recent history of the species with the local environmental changes. We compared the terrain and fossil analyses with an area in the Rif mountains where the terrain rugosity is lighter than in the Middle Atlas and where Atlas cedar populations occur as well.Our results show that the Atlas cedar is better preserved in terrains with high rugosity because they offer a wider panel of suitable microclimates for the species persistence and they restrict the number of inhabitants as well which, de facto, reduces the anthropogenic disturbances.We have carried out this analysis at a very small scale (less than 40km2). A more exhaustive analysis of the terrain rugosity over the Atlas and Rif mountains, combined with historical data, will help to identify more suitable refugial areas for preserving the species at a larger scale. Protecting these refugial areas over decades from any anthropogenic activity should be possible at a minimal cost and would represent an immediate response to the ongoing climate change for preserving endangered species

    Climate change and ecosystems dynamics over the last 6000 years in the Middle Atlas, Morocco

    Get PDF
    International audienceThe present study aims at reconstructing past climate changes and their environmental impacts on plant ecosystems during the last 6000 years in the Middle Atlas, Morocco. Mean January temperature (Tjan), annual precipitation (Pann), winter (Pw) and summer (Ps) precipitation, and a seasonal index (SI) have all been quantified from a fossil pollen record. Several bio- and geo-chemical elements have also been analysed to evaluate the links between past climate, landscape, and ecosystem changes.Over the last 6000 years, climate has changed within a low temperature and precipitation range with a trend of aridity and warming towards the present. Tjan has varied within a ca. 2 °C range, and Pann within less than 100 mm yr-1. The long-term changes reconstructed in our record between 6 ka cal BP and today are consistent with the aridity trend observed in the Mediterranean basin. Despite the overall limited range of climate fluctuation, we observe major changes in the ecosystem composition, the carbon isotopic contents of organic matter (δ13C), the total organic carbon and nitrogen amount, and the carbon to nitrogen ratio (C / N) after ca. 3750 cal BP. The main ecosystem changes correspond to a noticeable transition in the conifer forest between the Atlas cedar, which expanded after 3750 cal BP, and the pine forest. These vegetation changes impacted the sedimentation type and its composition in the lake.Between 5500 and 5000 cal BP, we observe an abrupt change in all proxies which is coherent with a decrease in Tjan without a significant change in the overall amount of precipitation

    Early Holocene greening of the Sahara requires Mediterranean winter rainfall

    No full text
    International audienceThe greening of the Sahara, associated with the African Humid Period (AHP) between ca. 14,500 and 5,000 y ago, is arguably the largest climate-induced environmental change in the Holocene; it is usually explained by the strengthening and northward expansion of the African monsoon in response to orbital forcing. However, the strengthened monsoon in Early to Middle Holocene climate model simulations cannot sustain vegetation in the Sahara or account for the increased humidity in the Mediterranean region. Here, we present an 18,500-y pollen and leaf-wax δD record from Lake Tislit (32° N) in Morocco, which provides quantitative reconstruction of winter and summer precipitation in northern Africa. The record from Lake Tislit shows that the northern Sahara and the Mediterranean region were wetter in the AHP because of increased winter precipitation and were not influenced by the monsoon. The increased seasonal contrast of insolation led to an intensification and southward shift of the Mediterranean winter precipitation system in addition to the intensified summer monsoon. Therefore, a winter rainfall zone must have met and possibly overlapped the monsoonal zone in the Sahara. Using a mechanistic vegetation model in Early Holocene conditions, we show that this seasonal distribution of rainfall is more efficient than the increased monsoon alone in generating a green Sahara vegetation cover, in agreement with observed vegetation. This conceptual framework should be taken into consideration in Earth system paleoclimate simulations used to explore the mechanisms of African climatic and environmental sensitivity
    corecore