34 research outputs found

    Molecular cloning and in silico analysis of three somatic embryogenesis receptor kinase mRNA from date palm

    Get PDF
    We report here the isolation and characterizations of three somatic embryogenesis receptor kinase (PhSERK) genes from palm date by a rapid amplification of cDNA ends (RACE) approach. PhSERKs belong to a small family of receptor kinase genes, share a conserved structure and extensive sequence homology with previously reported plant SERK genes. Sequence analysis of these genes revealed the sequence size of 11051 pb (PhSERK1), 7981 pb (PhSERK2) and 10510 pb (PhSERK3). The open reading frames of PhSERK1, PhSERK2 and PhSERK3 are 1914 pb, 1797 pb and 1719 pb respectively. PhSERKs belongs to the LRR-type cell surface RLKs, which possess a number of characteristic domains. These include an extracellular domain (EX) containing a variable number of LRR units, signal pepetide (SP) immediately followed by a single transmembrane domain (TM) and an intracellular kinase domain. The phylogenetic tree shows that the protein PhSERK1, PhSERK2 and PhSERK3 clustered within monocots SERKs proteins groups. We also predicted the secondary and tertiary with ligand binding sites structure of the protein PhSERKs

    First reported case of spontaneous hermaphrodism in female date palm (Phoenix dactylifera L.), cv 'Alligue'

    Get PDF
    The date palm (Phoenix dactylifera L.) is dioecious with male flowers deficient in functional gynoecium and female flowers deficient in functional androecium borne on separate palms. The presence of male and female flowers on the same plant, a phenomenon known as monoecy, is unusual in male date palms. This study reports for the first time on hermaphrodite (bisexual) flowers borne by two female date palms, 'Alligue', that were found growing in an open field in Degache, southern Tunisia. The observations on these two female palms were compared with hermaphrodite male date palms growing in the same location. Hermaphrodite female date palm inflorescence branches bear female flowers predominantly near their base, in contrast to the hermaphrodite flowers that are found primarily toward their upper part. The position of the hermaphrodite flowers in hermaphrodite male date palms is reversed: inflorescence branches bear male flowers toward the upper part while the hermaphrodite flowers are found at the base. Histological examination of female hermaphrodite flowers revealed that they had three carpels and 1-6 stamens. Hermaphrodite flowers on male plants were usually also composed of three carpels of variable size, and six stamens. Hermaphrodite flowers on both female and male palm trees turn generally into parthenocarpic fruits. The present data support the theory that dioecious plants are derived from a common hermaphrodite ancestor. Floral hermaphroditism in date palm should be investigated in relation to the in planta self-fertilization process to identify sex markers and genes that control sex organ development.Peer reviewe

    The Regulation of Ion Homeostasis, Growth, and Biomass Allocation in Date Palm Ex Vitro Plants Depends on the Level of Water Salinity

    Get PDF
    The date palm, a central plant in the fragile oasis ecosystem, is considered one of the fruit species most tolerant to salt stress. However, the tolerance mechanisms involved are yet to be addressed and their evaluation until now was mainly based on heterogenous plant material such as seedlings or limited to in vitro experiment conditions. For these reasons, we propose to deepen our knowledge of the morphological and physiological responses to salt stress using acclimated ex vitro plants resulting from the propagation of a single genotype. The plants were irrigated with 0, 150, 300, or 450 mM NaCl solutions for four months. Our results showed that the influence of water salinity on growth and ion-homeostasis regulation was very dependent on stress levels. The 150 mM NaCl concentration was found to improve dry biomass by about 35%, but at higher salt concentrations (300 and 450 mM) it decreased by 40–65%. The shoot:root dry mass ratio decreased significantly at the 150 mM NaCl water concentration and then increased with increasing water salt concentration. The leaf:root ratio for Na+ and Cl− decreased significantly with increasing water salinity up to a concentration of 300 mM NaCl, and then stabilized with similar values for 300 mM and 450 mM NaCl. In contrast to Na+ and Cl−, leaf K+ content was significantly higher in the leaf than in the root for all salt treatments. Unlike Na+ and K+, Cl− was expelled to the surface of leaves in response to increased water salinity. Overall, date palm plants appear to be more capable of excluding Cl− than Na+ and of changing biomass allocation according to salt-stress level, and their leaves and roots both appear to play an important role in this tolerance strategy.All authors are funded through the Small Research group project from the Deanship of Scientific Research at King Khalid University under research grant number (R.G.P.1/295/43).Peer reviewe

    Differential effect of water salinity levels on gas exchange, chlorophyll fluorescence and antioxidant compounds in ex vitro date palm plants

    Get PDF
    In this study, the response to salt stress was evaluated in ex vitro acclimated date palm plants, regenerated from in vitro culture multiplication. The plants, eighteen-month-old, were irrigated with 0 (control), 150, 300 or 450 mM NaCl solutions (high to very high-water salinity). Photosynthesis parameters and antioxidant compounds were determined at the end of the experiment in leaves. At 150 mM NaCl, net CO2 assimilation rate and internal CO2 concentration were not impaired; while transpiration and stomatal conductance decreased by 60 and 70%, respectively. By increasing salt concentrations, all gas exchanges parameters were decreased. Measurement of chlorophyll fluorescence and P700 redox state showed that PSII and PSI machineries were significantly enhanced under 150 mM NaCl, conditions. With the 300 mM NaCl, the PSI parameters remained unchanged compared to control, while some of the PSII parameters, such as NPQ and Y (NPQ), were increased. At 450 mM NaCl, photosystems functionality was light intensity (PAR) dependent. Only at low PAR, a significant increase of some PSI and PSII parameters was observed. At the contrary, with high PAR, most of the energy conversion functions were significantly reduced, especially those related to PSI, indicating that PSI was more susceptible for damage by salinity than PSII. To overcome high salinity stress, ex vitro date palm plants mobilized a cascade of physio-biochemical pathways including the antioxidant activity and proline biosynthesis. Overall, the salinity of irrigation water, and up to 150 mM, improves the physiological performance of ex vitro date palm plants, which manage to tolerate very high levels of this stress.The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through the large research Groups projects (Project under grant number (RGP. 2/73/44)).Peer reviewe

    Staminodes evolution and in vitro development innovation in date palm (Phoenix dactylifera L.)

    No full text
    The in vitro cultivation of date palm staminodes (vestigial stamens) at different stages of female floral ontogenesis confirms the persistence at an immature state of such organs at all the floral differentiation stages. This is evidenced even in fully mature female flowers. Our study revealed the advanced developmental patterns of these rudimentary structures, which bear diverse morphogenetic potentialities. In vitro cultivation of staminodes provides new opportunities for in vitro regeneration of date palm. Such developmental processes were found to be modulated by the stage of floral differentiation, which closely reflected the level of staminode maturity. Development was also impacted by the composition and concentration in plant growth regulators (NAA, BAP and 2,4-D) of the culture media. The large morphogenetic plasticity of the staminodes disposed them to evolutionary variations of the date palm reproduction system. The practical benefits (micropropagation) and the fundamental interests (evolutionary process) of our investigation are discussed.The authors would like to express their sincere gratitude to Mr. Anouar Smaoui and Mrs. Hanen Ben Salem from the English Language Unit at the Sfax Faculty of Science for their appreciated translation and language polishing services. They also thank Dr. Riadh Drira for his valued contribution to language revision. This work was supported by the Tunisian Ministry of Higher Education, Scientific Research .Scopu

    Molecular characterization and evolution studies of a SERK like gene transcriptionally induced during somatic embryogenesis in Phoenix Dactylifera L v Deglet Nour

    No full text
    A somatic embryogenesis receptor kinase like (SERKL) cDNA, designated PhSERKL, was isolated from date palm (Phoenix Dactylifera L) using RACE PCR. PhSERKL protein shared all the characteristic domains of the SERK family, including five leucine-rich repeats, one proline-rich region motif, a transmembrane domain, and kinase domains. Phylogenetic analyses using PHYLIP and Notung 2.7 programs suggest that the SERK proteins of some plant species resulted from relatively ancient duplication events. We predict an ancestor protein of monocots and dicots SERK using FASTML program. Somatic embryogenic cultures of date palm were established following transfer of callus cultures to medium containing 2, 4-dichlorophenoxyacetic acid. The role of PhSERKL gene during establishment of somatic embryogenesis in culture was investigated using quantitative real-time PCR. PhSERKL gene was highly expressed during embryogenic competence acquisition and globular embryo formation in culture. Overall, levels of expression of PhSERKL gene were lower in nonembryogenic tissues and organs than in embryogenic callus
    corecore