17 research outputs found
Bayesian inversion and wave-equation tomography using ambient noise records from dense seismological networks : 3-D lithospheric models of the Alps and the Ligurian sea
Dans le contexte tectonique complexe de la rĂ©gion ouest mĂ©diterranĂ©enne, les processusdynamiques profonds impliquĂ©s dans lâorogenĂšse des Alpes occidentales et lâouverture du bassindâarriĂšre-arc liguro-provençal ne sont pas encore entiĂšrement compris. Bien que ces rĂ©gions aientĂ©tĂ© sondĂ©es par un large Ă©ventail dâĂ©tudes gĂ©ologiques et gĂ©ophysiques, il existe toujours unfossĂ© en termes de prĂ©cision entre la connaissance de la gĂ©ologie de surface et la connaissancede la structure lithosphĂ©rique tridimensionnelle â cruciale pour dĂ©crire la dynamique profonde.La disponibilitĂ© des rĂ©seaux permanents europĂ©ens, du rĂ©seau temporaire dense AlpArray,et dâautres rĂ©seaux temporaires, donne une opportunitĂ© unique pour rĂ©aliser des imageriessismiques 3-D haute-rĂ©solution Ă grande Ă©chelle afin de mieux contraindre les structures de lacroĂ»te et du manteau supĂ©rieur sous les Alpes occidentales et sous le bassin Liguro-Provençal.En tirant profit de cette couverture sismologique exceptionnelle, nous construisons desmodĂšles 3-D haute-rĂ©solution de vitesse dâondes de cisaillement Ă partir du bruit ambiant enutilisant des approches dâimagerie innovantes. Tout dâabord, nous rĂ©alisons une inversion probabiliste complĂšte dans le cadre de la tomographie bruit ambiant âclassiqueâ Ă deux Ă©tapes (ANT): (i) nous calculons des cartes 2-D de vitesse de groupe dâonde de Rayleigh et leurs incertitudesdans la bande de pĂ©riode 4-150 s en utilisant une inversion bayĂ©sienne transdimensionnelle;(ii) en utilisant une inversion probabiliste 1-D qui tient compte des incertitudes dans la courbede dispersion locale, nous estimons Ă chaque localisation, Ă chaque profondeur, la densitĂ© deprobabilitĂ© sur les vitesses dâondes de cisaillement et sur la prĂ©sence dâinterfaces. Le modĂšleprobabiliste Vs est ensuite affinĂ© par une inversion linĂ©aire. Le modĂšle obtenu fournit une imageĂ haute rĂ©solution de la subduction de la lithosphĂšre europĂ©enne et prĂ©sente un remarquableaccord avec les coupes transversales de fonction rĂ©cepteur dans les Alpes occidentales.La partie marine du modĂšle ANT Vs , Ă savoir la mer Ligure, est construite aprĂšs un traitement spĂ©cifique des donnĂ©es de stations OBS : (i) nous amĂ©liorons le contenu longue pĂ©riode desenregistrements bruts des OBS en Ă©liminant les bruits Ă©lectroniques et les bruits du fond marin;(ii) nous optimisons la couverture des trajets dans la mer Ligure en calculant des corrĂ©lationsitĂ©ratives OBS-OBS, impliquant des stations terrestres des rĂ©seaux AlpArray et permanents.Le modĂšle 3-D Vs obtenu prĂ©sente un remarquable accord avec les donnĂ©es de la sismique activele long de lâaxe du bassin et apporte de nouvelles informations sur la lithologie et la naturepĂ©trologique de la croĂ»te ocĂ©anique sous le bassin Liguro-Provençal.La deuxiĂšme Ă©tape consiste Ă affiner la croĂ»te et le manteau supĂ©rieur du modĂšle ANT sousles Alpes et la mer Ligure. Pour ce faire, nous rĂ©alisons une tomographie par Ă©quation dâonde(WET) basĂ©e sur la modĂ©lisation numĂ©rique de la propagation Ă©lastiques et Ă©lasto-acoustiques3-D dâondes de surface. Le modĂšle Vs est mis Ă jour itĂ©rativement en minimisant les diffĂ©rencesde temps de phase entre les formes dâonde observĂ©es et synthĂ©tiques dans la bande de pĂ©riode5-85 s. Nous appliquons un couplage fluide-solide dans la bande de pĂ©riode 5-20 s afin de tenircompte de lâeffet de la couche dâeau sur la propagation 3-D des ondes de Rayleigh-Scholte dansle bassin Liguro-Provençal et Ă travers ses marges conjuguĂ©es. Le modĂšle 3-D Vs obtenu est demeilleure rĂ©solution, prĂ©sentant de plus forts contrastes de vitesse et de nouvelles structures.Nous extrayons du modĂšle obtenu une carte de Moho terre-mer 3-D, dont la rĂ©solution estsupĂ©rieure Ă celle des cartes de Moho prĂ©cĂ©dentes dans les Alpes et la mer Ligure.In the complex tectonic setting of the western Mediterranean region, the deep dynamic processes involved in the orogenesis of the western Alps and the opening of the Ligurian-Provenceback-arc basin remain not fully understood. Although these regions have been probed by abroad spectrum of geological and geophysical studies, there is still a gap in precision betweenthe knowledge of the surface geology and the knowledge of the three-dimensional lithosphericstructure â crucial for describing the deep dynamics. The availability of the European permanent networks, the dense AlpArray temporary network, and other temporary experiments, givesa unique opportunity for large-scale, high-resolution 3-D seismic imaging to further constrainthe crust and upper mantle structures beneath the western Alps and the Ligurian-Provencebasin.Taking advantage of this exceptional seismic coverage, we construct high-resolutionambient-noise 3-D shear-wave velocity models using innovative imaging approaches. First, weperform a full data-driven probabilistic inversion in the framework of the two-step âclassicalâambient-noise tomography (ANT): (i) we compute 2-D Rayleigh-wave group-velocity maps andtheir uncertainties in the period band 4-150 s using a transdimensional Bayesian inversion; (ii)using a 1-D probabilistic inversion that accounts for uncertainties in the local dispersion curve,we estimate at each location, at each depth, the probability density on shear-wave velocitiesand on the presence of interfaces. The probabilistic Vs model is further refined using a linearinversion. The resulting model provides a high-resolution image of the European lithospheresubduction and presents a striking fit with receiver-function cross-sections in the western Alps.The offshore part of the ANT Vs model, the Ligurian sea, is constructed after a specificprocessing of the OBS data: (i) we enhance the long-period content of the OBS noise recordsby correcting for transients and seabed-induced noises; (ii) we optimize the path coverage inthe Ligurian sea by computing OBS-OBS iterative correlations, involving onshore stations ofAlpArray and permanent networks. The obtained 3-D Vs model presents a striking fit withcontrolled-source seismic data along the basin axis and provides new insights on the lithologyand petrological nature of the Ligurian oceanic crust.The second step consists in refining the crust and uppermost mantle parts of the ANTmodel in the Alps and the Ligurian sea. To achieve this, we perform a wave-equation tomography (WET) based on numerical modelling of 3-D elastic and acoustic-elastic surface-wavepropagation. The velocity model is iteratively updated by minimizing the phase traveltimedifferences between the observed and synthetic waveforms in the period band 5-85 s. We applya fluid-solid coupling for waveform simulations in the 5-20 s period band to fully account forthe water-layer effect on 3-D propagation of Rayleigh-Scholte waves in the Ligurian-Provencebasin and its conjugate margins. The resulted 3-D V s model is of higher resolution, exhibitingnew features and stronger velocity contrasts. We extract an onshore-offshore 3-D Moho map,higher-resolution than the previous Moho maps in the Alps and Ligurian sea
Vers un modÚle intégré des données géophysiques et géologiques des Alpes occidentales : tomographie sismique de la lithosphÚre alpine par corrélation de bruit ambiant
International audienceNotre objectif de long terme est de contribuer Ă la construction d'un gĂ©omodĂšle des Alpes. Ici nous prĂ©sentons un modĂšle 3-D de la vitesse des ondes S de la lithosphĂšre alpine obtenu par tomographie de bruit sismique ambiant. Pour ce faire, nous utilisons l'un des meilleurs jeux de donnĂ©es sismologiques disponibles aujourd'hui constituĂ© de 4 ans d'enregistrements de plus de 900 stations permanentes europĂ©ennes, des ~350 stations temporaires terrestres et fond de mer du projet europĂ©en AlpArray ainsi des ~110 stations des projets CIFALPS et CIFALPS2 (profils denses aux travers des Alpes occidentales). Nous tirons profit de la qualitĂ© de ce jeu de donnĂ©es pour mettre en place une mĂ©thode innovante permettant de construire des cartes de vitesse de groupe probabiliste en 4s et 150s de pĂ©riode Ă partir d'une inversion 2-D Transdimensionelle hiĂ©rarchique (Bodin et Sambridge, 2009). Pour tenir compte de la non-linĂ©aritĂ© du problĂšme inverse, nous avons combinĂ© cette mĂ©thode avec la Fast Marching Methode (Rawnilson et Sambridge, 2005). Nous construisons le modĂšle Vs 3D probabiliste Ă partir des cartes de vitesse de groupe en inversant Ă chaque pixel la courbe de dispersion locale par une inversion BayĂ©sienne. Un traitement spĂ©cifique a Ă©tĂ© appliquĂ© sur les donnĂ©es brutes de fond de mer afin de supprimer les bruits ocĂ©aniques et instrumentaux (Crawford et Webb, 2000). Ce modĂšle sera utilisĂ© pour modĂ©liser la propagation des ondes de surface issues de corrĂ©lations de bruit et des ondes de volumes issues de sĂ©ismes rĂ©gionaux Ă partir des outils dĂ©veloppĂ©s dans le cadre du consortium SEISCOPE. Ces modĂšles sismologiques serviront dâappuis pour produire un gĂ©omodĂšle 3D de rĂ©fĂ©rence Ă lâĂ©chelle des Alpes occidentales dans le cadre du chantier RGF, Alpes et bassins pĂ©riphĂ©riques
Vers un modÚle intégré des données géophysiques et géologiques des Alpes occidentales : tomographie sismique de la lithosphÚre alpine par corrélation de bruit ambiant
International audienceNotre objectif de long terme est de contribuer Ă la construction d'un gĂ©omodĂšle des Alpes. Ici nous prĂ©sentons un modĂšle 3-D de la vitesse des ondes S de la lithosphĂšre alpine obtenu par tomographie de bruit sismique ambiant. Pour ce faire, nous utilisons l'un des meilleurs jeux de donnĂ©es sismologiques disponibles aujourd'hui constituĂ© de 4 ans d'enregistrements de plus de 900 stations permanentes europĂ©ennes, des ~350 stations temporaires terrestres et fond de mer du projet europĂ©en AlpArray ainsi des ~110 stations des projets CIFALPS et CIFALPS2 (profils denses aux travers des Alpes occidentales). Nous tirons profit de la qualitĂ© de ce jeu de donnĂ©es pour mettre en place une mĂ©thode innovante permettant de construire des cartes de vitesse de groupe probabiliste en 4s et 150s de pĂ©riode Ă partir d'une inversion 2-D Transdimensionelle hiĂ©rarchique (Bodin et Sambridge, 2009). Pour tenir compte de la non-linĂ©aritĂ© du problĂšme inverse, nous avons combinĂ© cette mĂ©thode avec la Fast Marching Methode (Rawnilson et Sambridge, 2005). Nous construisons le modĂšle Vs 3D probabiliste Ă partir des cartes de vitesse de groupe en inversant Ă chaque pixel la courbe de dispersion locale par une inversion BayĂ©sienne. Un traitement spĂ©cifique a Ă©tĂ© appliquĂ© sur les donnĂ©es brutes de fond de mer afin de supprimer les bruits ocĂ©aniques et instrumentaux (Crawford et Webb, 2000). Ce modĂšle sera utilisĂ© pour modĂ©liser la propagation des ondes de surface issues de corrĂ©lations de bruit et des ondes de volumes issues de sĂ©ismes rĂ©gionaux Ă partir des outils dĂ©veloppĂ©s dans le cadre du consortium SEISCOPE. Ces modĂšles sismologiques serviront dâappuis pour produire un gĂ©omodĂšle 3D de rĂ©fĂ©rence Ă lâĂ©chelle des Alpes occidentales dans le cadre du chantier RGF, Alpes et bassins pĂ©riphĂ©riques
Vers un modÚle intégré des données géophysiques et géologiques des Alpes occidentales : tomographie sismique de la lithosphÚre alpine par corrélation de bruit ambiant
International audienceNotre objectif de long terme est de contribuer Ă la construction d'un gĂ©omodĂšle des Alpes. Ici nous prĂ©sentons un modĂšle 3-D de la vitesse des ondes S de la lithosphĂšre alpine obtenu par tomographie de bruit sismique ambiant. Pour ce faire, nous utilisons l'un des meilleurs jeux de donnĂ©es sismologiques disponibles aujourd'hui constituĂ© de 4 ans d'enregistrements de plus de 900 stations permanentes europĂ©ennes, des ~350 stations temporaires terrestres et fond de mer du projet europĂ©en AlpArray ainsi des ~110 stations des projets CIFALPS et CIFALPS2 (profils denses aux travers des Alpes occidentales). Nous tirons profit de la qualitĂ© de ce jeu de donnĂ©es pour mettre en place une mĂ©thode innovante permettant de construire des cartes de vitesse de groupe probabiliste en 4s et 150s de pĂ©riode Ă partir d'une inversion 2-D Transdimensionelle hiĂ©rarchique (Bodin et Sambridge, 2009). Pour tenir compte de la non-linĂ©aritĂ© du problĂšme inverse, nous avons combinĂ© cette mĂ©thode avec la Fast Marching Methode (Rawnilson et Sambridge, 2005). Nous construisons le modĂšle Vs 3D probabiliste Ă partir des cartes de vitesse de groupe en inversant Ă chaque pixel la courbe de dispersion locale par une inversion BayĂ©sienne. Un traitement spĂ©cifique a Ă©tĂ© appliquĂ© sur les donnĂ©es brutes de fond de mer afin de supprimer les bruits ocĂ©aniques et instrumentaux (Crawford et Webb, 2000). Ce modĂšle sera utilisĂ© pour modĂ©liser la propagation des ondes de surface issues de corrĂ©lations de bruit et des ondes de volumes issues de sĂ©ismes rĂ©gionaux Ă partir des outils dĂ©veloppĂ©s dans le cadre du consortium SEISCOPE. Ces modĂšles sismologiques serviront dâappuis pour produire un gĂ©omodĂšle 3D de rĂ©fĂ©rence Ă lâĂ©chelle des Alpes occidentales dans le cadre du chantier RGF, Alpes et bassins pĂ©riphĂ©riques
Assessing Chemical and Mineralogical Properties of the Alpine Slab Based on Field Analogs and Ambient Noise Tomography
International audienceRecent geophysical campaigns in the Alps produce images with seismic property variations along the slab of sufficiently fine resolution to be interpreted as rock transformations. Since the reacting European lower crust is presumed responsible for the variations of velocities at the top of the Alpine slab, we sampled local analogs of the lower crustal lithologies in the field and modeled the evolution of equilibrium seismic properties during burial, along possible pressureâtemperature paths for the crustal portion of the slab. The results are then compared to the range of the S âwave velocities obtained from the S âwave velocity tomography model along the CIFALPS transect. The velocity increase from 25 to 45 km within the slab, in the tomographic model is best reproduced by the transformation of specific lithologies in the highâpressure granulite facies along a collisional gradient (30°C/km). Although the crust is certainly not completely homogeneous, the best candidates for the rocks that make up the top of the Alpine dip crustal panel are a kinzigite from Monte San Petrone, a gneiss from the Insubric line, and blueschist mylonite from Canavese. While they may not represent the entirety of the crust, they are sufficient to explain the tomographic velocity of the Alpine slab. A lateral lithological contrast inherited from the Variscan orogeny is not required. Eclogitization, suggested as the firstâorder transformation in convergence zones, could be a secondâorder transformation in collisional wedges. These results also imply a partially reâequilibrated thermal gradient, consistent with the Alpine thermal state data at depth
Bulk chemical composition of rock samples used to calculate their seismic velocity at lower crustal conditions
These data are linked to a published study, whose aim is to compare the seismic velocity variations, derived from tomographic models (here the CIFALPS profile in the Alps, derived from Nouibat et al., 2022) and interpreted as rock transformations, with the seismic velocities of field samples. One way to predict seismic velocity at lower crustal conditions is to consider natural rocks as isotropic and to calculate their seismic properties from the relative abundance of mineral phases using their acknowledged properties (Abers and Hacker, 2016). In this process, the bulk chemical composition of the samples constitutes the starting data for this study. The subsequent work is based solely on thermodynamic models (here mainly using Holland and Powel, 1998 database) and the physical properties of the mineral phases (database from Abers and Hacker, 2016)
Role of mantle indentation in collisional deformation evidenced by deep geophysical imaging of Western Alps
International audienceIn collision belts, the first-order role of the mantle in localizing deformation has remainedelusive, as the resolution of geophysical imaging remains too low to constrain crustal geometry.To address this issue, we geologically interpret a recent high-resolution shear-wavevelocity model from ambient-noise tomography of Western Alps. We show that the lowercrustal Alpine geometry is highly variable at depth, evolving from a preserved Europeancrustal slab in the South to a smooth crustal root in the North. Moho morphology is controlledby numerous pre-existing major faults reactivated during the Alpine orogeny. Twomantle indenters located above the subducted European plate at different depths appear tocontrol the locus of active deformation. The rigid nature of Adria mantle explains the localizationof brittle deformation that is transferred towards the upper crust. The strain-fieldpartitioning results in a combination of strike-slip with either shortening or extension controlledby the anticlockwise rotation of Adria
New Developments in Passive Seismic Imaging and Monitoring Methodological advances on seismic noise imaging in the Alpine area
International audienceMethodological advances in seismic tomography are often driven by the quality of data sets. The dense and homogeneous spatial coverage of the AlpArray seismic network, including hundreds of permanent and temporary broadband stations, has motivated a series of methodological develop- ments of ambient-noise-based tomography of the lithosphere across the entire Alps-Apennines re- gions, which have been published and are reviewed here. To take full advantage of the ocean-bottom seismometers (OBS) in the Ligurian-Provence basin, reconstructed Rayleigh wave signals between OBS have been improved by second-order correlations with onland stations. A Bayesian or fully trans- dimensional formalism has been introduced in both steps of isotropic ambient noise tomography. The three-dimensional S-wave velocity models have been further improved by wave-equation based inversions accounting for the physics of seismic wave propagation, including elasticâacoustic cou- pling at the sea bottom. A beamforming approach has been developed to avoid systematic errors in the measurement of azimuthal anisotropy from seismic noise. Probabilistic inversions for depth vari- ations of azimuthal and radial anisotropy have provided robust estimates of anisotropic parameters in the crust and upper mantle that differ significantly from earlier surface-wave tomography studies. These methodological improvements have taken the full benefit of the quality of available seismic data to significantly improve knowledge of the seismic structure of the crust and shallow mantle beneath the Alps-Apennines system. Our findings include detailed mapping of strong and abrupt Moho depth changes under the Western Alps, contrasting orientations of fast velocity directions between the upper and lower Alpine crust, and the absence of significant radial anisotropy everywhere in the European crust and shallow upper mantle, except in the Apenninic lower crust. These methods can be applied to similar dense arrays with equivalent potential benefits
Shaping the crustal structure of the SW-Alpine Foreland: Insights from 3D Geological modeling
International audienceReactivation processes play a significative role in the localization of deformation but still remain hard to establish at the lithospheric scale. In this work, we built a 3D structural model, which enables to bridge the gap between the main tectonic structures observed at the surface and the geometry of the major interfaces (the MohoroviÄiÄ-discontinuity (hereafter Moho) and top of the basement) inferred from geophysical data acquired in the external Western Alps and their foreland. The geometry of these tectonic structures is interpreted in relation to their geodynamic evolution. The main results of this study highlight: (1) a strong contribution of thick-skinned Pyrenean-Provence and Alpine tectonics, (2) a lithospheric rooting of Variscan shear zones and related faults, and (3) the regional-scale influence of these inherited structures on the post-Paleozoic strain localization in the study area. Our 3D model shows that the pattern of Variscan shear zones that were developed at the end of the Paleozoic involved the whole crust, as emphasized by the Moho offsets. These shear zones were reactivated and localized Meso-Cenozoic deformation. The Variscan deformation pattern controlled the geometry of extensional basins, the propagation of Pyrenean-Provence deformation, and finally the Alpine deformation at crustal scale. Our 3D model shows minor crustal thickening (ca. 40 km) located below the Pelvoux External Crystalline Massif, which probably resulted from both Pyrenean and Alpine tectonic phases. In contrast, the southern part of the Alpine front shows a thinned crust (ca. 18 km) resulting from extensional Meso-Cenozoic phases between the CĂ©vennes margin and the Durance basin