136 research outputs found

    Non-commutative holonomies in 2+1 LQG and Kauffman's brackets

    Full text link
    We investigate the canonical quantization of 2+1 gravity with {\Lambda} > 0 in the canonical framework of LQG. A natural regularization of the constraints of 2+1 gravity can be defined in terms of the holonomies of A\pm = A \PM \surd{\Lambda}e, where the SU(2) connection A and the triad field e are the conjugated variables of the theory. As a first step towards the quantization of these constraints we study the canonical quantization of the holonomy of the connection A_{\lambda} = A + {\lambda}e acting on spin network links of the kinematical Hilbert space of LQG. We provide an explicit construction of the quantum holonomy operator, exhibiting a close relationship between the action of the quantum holonomy at a crossing and Kauffman's q-deformed crossing identity. The crucial difference is that the result is completely described in terms of standard SU(2) spin network states.Comment: 4 pages; Proceedings of Loops'11, Madrid, to appear in Journal of Physics: Conference Series (JPCS

    Three Dimensional Quantum Geometry and Deformed Poincare Symmetry

    Full text link
    We study a three dimensional non-commutative space emerging in the context of three dimensional Euclidean quantum gravity. Our starting point is the assumption that the isometry group is deformed to the Drinfeld double D(SU(2)). We generalize to the deformed case the construction of the flat Euclidean space as the quotient of its isometry group ISU(2) by SU(2). We show that the algebra of functions becomes the non-commutative algebra of SU(2) distributions endowed with the convolution product. This construction gives the action of ISU(2) on the algebra and allows the determination of plane waves and coordinate functions. In particular, we show that: (i) plane waves have bounded momenta; (ii) to a given momentum are associated several SU(2) elements leading to an effective description of an element in the algebra in terms of several physical scalar fields; (iii) their product leads to a deformed addition rule of momenta consistent with the bound on the spectrum. We generalize to the non-commutative setting the local action for a scalar field. Finally, we obtain, using harmonic analysis, another useful description of the algebra as the direct sum of the algebra of matrices. The algebra of matrices inherits the action of ISU(2): rotations leave the order of the matrices invariant whereas translations change the order in a way we explicitly determine.Comment: latex, 37 page

    Unfashionable observations about three dimensional gravity

    Full text link
    It is commonly accepted that the study of 2+1 dimensional quantum gravity could teach us something about the 3+1 dimensional case. The non-perturbative methods developed in this case share, as basic ingredient, a reformulation of gravity as a gauge field theory. However, these methods suffer many problems. Firstly, this perspective abandon the non-degeneracy of the metric and causality as fundamental principles, hoping to recover them in a certain low-energy limit. Then, it is not clear how these combinatorial techniques could be used in the case where matter fields are added, which are however the essential ingredients in order to produce non trivial observables in a generally covariant approach. Endly, considering the status of the observer in these approaches, it is not clear at all if they really could produce a completely covariant description of quantum gravity. We propose to re-analyse carefully these points. This study leads us to a really covariant description of a set of self-gravitating point masses in a closed universe. This approach is based on a set of observables associated to the measurements accessible to a participant-observer, they manage to capture the whole dynamic in Chern-Simons gravity as well as in true gravity. The Dirac algebra of these observables can be explicitely computed, and exhibits interesting algebraic features related to Poisson-Lie groupoids theory.Comment: 50 pages, written in LaTex, 3 pictures in encapsulated postscrip

    6J Symbols Duality Relations

    Get PDF
    It is known that the Fourier transformation of the square of (6j) symbols has a simple expression in the case of su(2) and U_q(su(2)) when q is a root of unit. The aim of the present work is to unravel the algebraic structure behind these identities. We show that the double crossproduct construction H_1\bowtie H_2 of two Hopf algebras and the bicrossproduct construction H_2^{*}\lrbicross H_1 are the Hopf algebras structures behind these identities by analysing different examples. We study the case where D= H_1\bowtie H_2 is equal to the group algebra of ISU(2), SL(2,C) and where D is a quantum double of a finite group, of SU(2) and of U_q(su(2)) when q is real.Comment: 28 pages, 2 figure

    Three dimensional loop quantum gravity: coupling to point particles

    Full text link
    We consider the coupling between three dimensional gravity with zero cosmological constant and massive spinning point particles. First, we study the classical canonical analysis of the coupled system. Then, we go to the Hamiltonian quantization generalizing loop quantum gravity techniques. We give a complete description of the kinematical Hilbert space of the coupled system. Finally, we define the physical Hilbert space of the system of self-gravitating massive spinning point particles using Rovelli's generalized projection operator which can be represented as a sum over spin foam amplitudes. In addition we provide an explicit expression of the (physical) distance operator between two particles which is defined as a Dirac observable.Comment: Typos corrected and references adde

    A Note on B-observables in Ponzano-Regge 3d Quantum Gravity

    Full text link
    We study the insertion and value of metric observables in the (discrete) path integral formulation of the Ponzano-Regge spinfoam model for 3d quantum gravity. In particular, we discuss the length spectrum and the relation between insertion of such B-observables and gauge fixing in the path integral.Comment: 17 page

    Cosmological Plebanski theory

    Full text link
    We consider the cosmological symmetry reduction of the Plebanski action as a toy-model to explore, in this simple framework, some issues related to loop quantum gravity and spin-foam models. We make the classical analysis of the model and perform both path integral and canonical quantizations. As for the full theory, the reduced model admits two types of classical solutions: topological and gravitational ones. The quantization mixes these two solutions, which prevents the model to be equivalent to standard quantum cosmology. Furthermore, the topological solution dominates at the classical limit. We also study the effect of an Immirzi parameter in the model.Comment: 20 page

    Spin Foams and Canonical Quantization

    No full text
    This review is devoted to the analysis of the mutual consistency of the spin foam and canonical loop quantizations in three and four spacetime dimensions. In the three-dimensional context, where the two approaches are in good agreement, we show how the canonical quantization à la Witten of Riemannian gravity with a positive cosmological constant is related to the Turaev-Viro spin foam model, and how the Ponzano-Regge amplitudes are related to the physical scalar product of Riemannian loop quantum gravity without cosmological constant. In the four-dimensional case, we recall a Lorentz-covariant formulation of loop quantum gravity using projected spin networks, compare it with the new spin foam models, and identify interesting relations and their pitfalls. Finally, we discuss the properties which a spin foam model is expected to possess in order to be consistent with the canonical quantization, and suggest a new model illustrating these results
    corecore