639 research outputs found

    A 43-Gbps Lithium Niobate Modulator Driver Module

    Get PDF
    This paper describes the realization of a 43-Gbps Lithium Niobate modulator driver module. The NRZ driver module utilizes four stages of GaAs p-HEMT MMIC amplifiers integrated with an output level detector and feedback loop to provide thermal stability and external control of the output swing. The bias and loop control circuitry are contained in the housing on a PC board external to the sealed MIC section. The integrated module (50.8 x 73.4 x 9.5 mm 3) provides 6.0 Vp-p controllable single-ended output voltage while dissipating only 4 watt

    Light Collimation and Focussing by a Thin Flat Metallic Slab

    Get PDF
    We present experimental and theoretical work showing that a flat metallic slab can collimate and focus light impinging on the slab from a punctual source. The effect is optimised when the radiation is around the bulk, not at the surface, plasma frequency. And the smaller the imaginary part of the permittivity is, the better the collimation. Experiments for Ag in the visible as well as calculations are presented. We also discuss the interesting case of the Aluminium whose imaginary part of the permittivity is very small at the plasma frequency in UV radiation. Generalization to other materials and radiations are also discussed.Comment: 6 pages, 3 figures. To be published on Optics Lette

    Superlensing properties of one-dimensional dielectric photonic crystals

    Full text link
    We present the experimental observation of the superlensing effect in a slab of a one-dimensional photonic crystal made of tilted dielectric elements. We show that this flat lens can achieve subwavelength resolution in different frequency bands. We also demonstrate that the introduction of a proper corrugation on the lens surface can dramatically improve both the transmission and the resolution of the imaged signal.Comment: 9 pages, 9 figure

    Optimization of quasi-normal eigenvalues for Krein-Nudelman strings

    Full text link
    The paper is devoted to optimization of resonances for Krein strings with total mass and statical moment constraints. The problem is to design for a given α∈R\alpha \in \R a string that has a resonance on the line \alpha + \i \R with a minimal possible modulus of the imaginary part. We find optimal resonances and strings explicitly.Comment: 9 pages, these results were extracted in a slightly modified form from the earlier e-print arXiv:1103.4117 [math.SP] following an advise of a journal's refere

    A review of size and geometrical factors influencing resonant frequencies in metamaterials

    Get PDF
    Although metamaterials and so-called left-handed media have originated from theoretical considerations, it is only by their practical fabrication and the measurement of their properties that they have gained credibility and can fulfil the potential of their predicted properties. In this review we consider some of the more generally applicable fabrication methods and changes in geometry as they have progressed, exhibiting resonant frequencies ranging from radio waves to the visible optical region

    Immittance Matching for Multi-dimensional Open-system Photonic Crystals

    Full text link
    An electromagnetic (EM) Bloch wave propagating in a photonic crystal (PC) is characterized by the immittance (impedance and admittance) of the wave. The immittance is used to investigate transmission and reflection at a surface or an interface of the PC. In particular, the general properties of immittance are useful for clarifying the wave propagation characteristics. We give a general proof that the immittance of EM Bloch waves on a plane in infinite one- and two-dimensional (2D) PCs is real when the plane is a reflection plane of the PC and the Bloch wavevector is perpendicular to the plane. We also show that the pure-real feature of immittance on a reflection plane for an infinite three-dimensional PC is good approximation based on the numerical calculations. The analytical proof indicates that the method used for immittance matching is extremely simplified since only the real part of the immittance function is needed for analysis without numerical verification. As an application of the proof, we describe a method based on immittance matching for qualitatively evaluating the reflection at the surface of a semi-infinite 2D PC, at the interface between a semi-infinite slab waveguide (WG) and a semi-infinite 2D PC line-defect WG, and at the interface between a semi-infinite channel WG and a semi-infinite 2D PC slab line-defect WG.Comment: 8 pages, 6 figure

    Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling

    Get PDF
    High-bit-rate nanocavity-based single photon sources in the 1,550-nm telecom band are challenges facing the development of fibre-based long-haul quantum communication networks. Here we report a very fast single photon source in the 1,550-nm telecom band, which is achieved by a large Purcell enhancement that results from the coupling of a single InAs quantum dot and an InP photonic crystal nanocavity. At a resonance, the spontaneous emission rate was enhanced by a factor of 5 resulting a record fast emission lifetime of 0.2 ns at 1,550 nm. We also demonstrate that this emission exhibits an enhanced anti-bunching dip. This is the first realization of nanocavity-enhanced single photon emitters in the 1,550-nm telecom band. This coupled quantum dot cavity system in the telecom band thus provides a bright high-bit-rate non-classical single photon source that offers appealing novel opportunities for the development of a long-haul quantum telecommunication system via optical fibres.Comment: 16 pages, 4 figure

    Ultrafast nonlocal control of spontaneous emission

    Full text link
    Solid-state cavity quantum electrodynamics systems will form scalable nodes of future quantum networks, allowing the storage, processing and retrieval of quantum bits, where a real-time control of the radiative interaction in the cavity is required to achieve high efficiency. We demonstrate here the dynamic molding of the vacuum field in a coupled-cavity system to achieve the ultrafast nonlocal modulation of spontaneous emission of quantum dots in photonic crystal cavities, on a timescale of ~200 ps, much faster than their natural radiative lifetimes. This opens the way to the ultrafast control of semiconductor-based cavity quantum electrodynamics systems for application in quantum interfaces and to a new class of ultrafast lasers based on nano-photonic cavities.Comment: 15 pages, 4 figure

    Coherent optical wavelength conversion via cavity-optomechanics

    Get PDF
    We theoretically propose and experimentally demonstrate coherent wavelength conversion of optical photons using photon-phonon translation in a cavity-optomechanical system. For an engineered silicon optomechanical crystal nanocavity supporting a 4 GHz localized phonon mode, optical signals in a 1.5 MHz bandwidth are coherently converted over a 11.2 THz frequency span between one cavity mode at wavelength 1460 nm and a second cavity mode at 1545 nm with a 93% internal (2% external) peak efficiency. The thermal and quantum limiting noise involved in the conversion process is also analyzed, and in terms of an equivalent photon number signal level are found to correspond to an internal noise level of only 6 and 4x10-3 quanta, respectively.Comment: 11 pages, 7 figures, appendi
    • …
    corecore