184 research outputs found

    Traditions in Spider Monkeys Are Biased towards the Social Domain

    Get PDF
    Cross-site comparison studies of behavioral variation can provide evidence for traditions in wild species once ecological and genetic factors are excluded as causes for cross-site differences. These studies ensure behavior variants are considered within the context of a species' ecology and evolutionary adaptations. We examined wide-scale geographic variation in the behavior of spider monkeys (Ateles geoffroyi) across five long-term field sites in Central America using a well established ethnographic cross-site survey method. Spider monkeys possess a relatively rare social system with a high degree of fission-fusion dynamics, also typical of chimpanzees (Pan troglodytes) and humans (Homo sapiens). From the initial 62 behaviors surveyed 65% failed to meet the necessary criteria for traditions. The remaining 22 behaviors showed cross-site variation in occurrence ranging from absent through to customary, representing to our knowledge, the first documented cases of traditions in this taxon and only the second case of multiple traditions in a New World monkey species. Of the 22 behavioral variants recorded across all sites, on average 57% occurred in the social domain, 19% in food-related domains and 24% in other domains. This social bias contrasts with the food-related bias reported in great ape cross-site comparison studies and has implications for the evolution of human culture. No pattern of geographical radiation was found in relation to distance across sites. Our findings promote A. geoffroyi as a model species to investigate traditions with field and captive based experiments and emphasize the importance of the social domain for the study of animal traditions.Research at Barro Colorado Island was supported by grants from the National Science Foundation (SBR-9711161), the Leakey Foundation, the Department of Anthropology, University of California, Berkeley (www.berkeley.edu) and a Short-term Fellowship from the Smithsonian Tropical Research Institute (www.stri.org). Research at Corcovado National Park's Sirena Biological Station was supported by NSF award 0233248 (with R. Sussman), the Wenner-Gren Foundation, the Leakey Foundation, the American Society of Primatologists (www.asp.org), and Washington University in St. Louis (www.wustl.edu). Funds for Sirena's field lab facility were provided to L. E. Gilbert (Univ. of Texas at Austin) by NSF BSR 8315399 and a matching WWF grant, and funds for updating Sirena's trail system and installation of spatial reference system were provided by the Mellon Foundation through the Institute of Latin American Studies at UT Austin. Research at Santa Rosa and Punta Laguna was supported by The British Academy (www.britac.ac.uk), the Wenner-Gren Foundation (www.wennergren.org), the Leakey Foundation (www.leakeyfoundation.org) and the North of England Zoological Society (www.chesterzoo.org). CJS was supported by a Gladstone bursary from the University of Chester (www.chester.ac.uk) and by the Santander University Scheme (www.santander.co.uk). Research at Runaway Creek was supported by the Natural Sciences and Engineering Research Council of Canada

    Traditions in spider monkeys are biased towards the social domain

    Get PDF
    Cross-site comparison studies of behavioral variation can provide evidence for traditions in wild species once ecological and genetic factors are excluded as causes for cross-site differences. These studies ensure behavior variants are considered within the context of a species' ecology and evolutionary adaptations. We examined wide-scale geographic variation in the behavior of spider monkeys (Ateles geoffroyi) across five long-term field sites in Central America using a well established ethnographic cross-site survey method. Spider monkeys possess a relatively rare social system with a high degree of fission-fusion dynamics, also typical of chimpanzees (Pan troglodytes) and humans (Homo sapiens). From the initial 62 behaviors surveyed 65% failed to meet the necessary criteria for traditions. The remaining 22 behaviors showed cross-site variation in occurrence ranging from absent through to customary, representing to our knowledge, the first documented cases of traditions in this taxon and only the second case of multiple traditions in a New World monkey species. Of the 22 behavioral variants recorded across all sites, on average 57% occurred in the social domain, 19% in food-related domains and 24% in other domains. This social bias contrasts with the food-related bias reported in great ape cross-site comparison studies and has implications for the evolution of human culture. No pattern of geographical radiation was found in relation to distance across sites. Our findings promote A. geoffroyi as a model species to investigate traditions with field and captive based experiments and emphasize the importance of the social domain for the study of animal traditions.Research at Barro Colorado Island was supported by grants from the National Science Foundation (SBR-9711161), the Leakey Foundation, the Department of Anthropology, University of California, Berkeley (www.berkeley.edu) and a Short-term Fellowship from the Smithsonian Tropical Research Institute (www.stri.org). Research at Corcovado National Park's Sirena Biological Station was supported by NSF award 0233248 (with R. Sussman), the Wenner-Gren Foundation, the Leakey Foundation, the American Society of Primatologists (www.asp.org), and Washington University in St. Louis (www.wustl.edu). Funds for Sirena's field lab facility were provided to L. E. Gilbert (Univ. of Texas at Austin) by NSF BSR 8315399 and a matching WWF grant, and funds for updating Sirena's trail system and installation of spatial reference system were provided by the Mellon Foundation through the Institute of Latin American Studies at UT Austin. Research at Santa Rosa and Punta Laguna was supported by The British Academy (www.britac.ac.uk), the Wenner-Gren Foundation (www.wennergren.org), the Leakey Foundation (www.leakeyfoundation.org) and the North of England Zoological Society (www.chesterzoo.org). CJS was supported by a Gladstone bursary from the University of Chester (www.chester.ac.uk) and by the Santander University Scheme (www.santander.co.uk). Research at Runaway Creek was supported by the Natural Sciences and Engineering Research Council of Canada. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Portland cement based immobilization/destruction of chemical weapon agent degradation products

    Get PDF
    The direct immobilization and destruction of two compounds relevant to chemical warfare agents, ethyl methylphosphonic acid (EMPA) and thiodiglycol (TDG), within a freshly mixed Portland cement paste was studied. Cement hydration and phase formation were analyzed to determine the upper limits on the loading of these chemicals achievable in an immobilization setting. EMPA, a degradation product of the nerve agent VX, alters the phase formation within the cements, allowing calcium aluminate dissolution while retarding hydration of calcium silicate clinker phases. This yielded ettringite, and sufficient calcium silicate hydrate for setting at 10 wt % loading, but the cohesive calcium silicate binding phase was lacking when EMPA was added at 25 wt %. The addition of TDG, a degradation product of sulfur mustard, uniformly retards the entire range of cement hydration mechanisms. Heat output was lowered and extended over a longer time frame, and less strength forming phases were produced. Up to 10% wt. TDG could be accommodated by the cement, but higher loadings caused severe disruption to the cement setting. This work demonstrates the ability of Portland cement to directly incorporate up to 10% wt. of these contaminants, and still form a stable set cement with conventional hydration phases

    Building Energy Use and Conservation in Cycle VIII of the Texas Institutional Conservation Program

    Get PDF
    Sixty-two technical assistance (energy audit) reports by twelve different consulting firms representing fifteen independent school districts, nine hospitals, and five colleges have been reviewed to assess energy use characteristics and recommended energy saving measures. Such measures include both maintenance and operation (H&O) measures (generally regarded as "low-cost, no-cost") and energy conservation (ECH) measures (generally more expensive and requiring outside skills). Implementation cost, annual savings of energy and costs, and paybacks were reported for all M&Os and ECHs. Measures were broken down by the consulting firms according to energy use characteristics and categories, and it was determined that average costs for electricity and gas, before implementation of M&Os and ECHs, were 0.0596/KWHand0.0596/KWH and 4.85/MMBTU respectively. The total implementation cost and projected annual savings for the M&Os are 73,000and73,000 and 223,000 respectively, yielding a four-month payback. The corresponding results for implementation of ECHs are 2,232,000and2,232,000 and 555,000, resulting in a four-year payback. Also, some obvious problems in the preparation of technical assistance reports along with the general background and implementation of the Institutional Conservation Program in Texas, resulting from the National Energy Act of 1978, are discussed

    Macrocyclisation of small peptides enabled by oxetane incorporation

    Get PDF
    Cyclic peptides are an important source of new drugs but are challenging to produce synthetically. We show that head-to-tail peptide macrocyclisations are greatly improved, as measured by isolated yields, reaction rates and product distribution, by substitution of one of the backbone amide C═O bonds with an oxetane ring. The cyclisation precursors are easily made by standard solution- or solid-phase peptide synthesis techniques. Macrocyclisations across a range of challenging ring sizes (tetra-, penta- and hexapeptides) are enabled by incorporation of this turn-inducing element. Oxetane incorporation is shown to be superior to other established amino acid modifications such as N-methylation. The positional dependence of the modification on cyclisation efficiency is mapped using a cyclic peptide of sequence LAGAY. We provide the first direct experimental evidence that oxetane modification induces a turn in linear peptide backbones, through the observation of dNN (i, i + 2) and dαN (i, i + 2) NOEs, which offers an explanation for these improvements. For cyclic peptide, cLAGAY, a combination of NMR derived distance restraints and molecular dynamics simulations are used to show that this modification alters the backbone conformation in proximity to the oxetane, with the flexibility of the ring reduced and a new intramolecular H-bond established. Finally, we incorporated an oxetane into a cyclic pentapeptide inhibitor of Aminopeptidase N, a transmembrane metalloprotease overexpressed on the surface of cancer cells. The inhibitor, cCNGRC, displayed similar IC50 values in the presence or absence of an oxetane at the glycine residue, indicating that bioactivity is fully retained upon amide C═O bond replacement

    Synthesis and Functionalization of Azetidine-Containing Small Macrocyclic Peptides

    Get PDF
    Cyclic peptides are increasingly important structures in drugs but their development can be impeded by difficulties associated with their synthesis. Here, we introduce the 3-aminoazetidine (3-AAz) subunit as a new turn-inducing element for the efficient synthesis of small head-to-tail cyclic peptides. Greatly improved cyclizations of tetra-, penta- and hexapeptides (28 examples) under standard reaction conditions are achieved by introduction of this element within the linear peptide precursor. Post-cyclization deprotection of the amino acid side chains with strong acid is realized without degradation of the strained four-membered azetidine. A special feature of this chemistry is that further late-stage modification of the resultant macrocyclic peptides can be achieved via the 3-AAz unit. This is done by: (i) chemoselective deprotection and substitution at the azetidine nitrogen, or by (ii) a click-based approach employing a 2-propynyl carbamate on the azetidine nitrogen. In this way, a range of dye and biotin tagged macrocycles are readily produced. Structural insights gained by XRD analysis of a cyclic tetrapeptide indicate that the azetidine ring encourages access to the less stable, all-trans conformation. Moreover, introduction of a 3-AAz into a representative cyclohexapeptide improves stability towards proteases compared to the homodetic macrocycle

    Utilising Drone Technology in Primatology for 3D Mapping

    Get PDF
    Emergent Unmanned Aerial System (or drone) technology allows the 3-dimensional mapping of forest landscapes, allowing a new perspective of arboreal primate habitat use. Utilising UASs in primatological studies enables the assessment of habitat quality for different arboreal primate species, the identification of discreet forms of anthropogenic disturbance (such as historical selective logging), and detailed investigation of canopy use by arboreal primate species. Combining 3D canopy structure with microclimate measurements, we can see how canopy structure buffers solar radiation and how arboreal species may be affected by future climate change. We present data on a study of the arboreal primate community in a lowland section of the Gunung Leuser Ecosystem in northern Sumatra, focusing on how 3D canopy structure effects ranging (siamang, Symphalangus syndactylus), different primate species’ population densities (lar gibbon, Hylobates lar, siamang and Thomas langur, Presbytis thomasi) and habitat selection (orang-utan, Pongo abelii and siamang) and how UAS technology can be utilised in other future studies; the potential opportunities, challenges and pitfalls

    Production and perception of situationally variable alarm calls in wild tufted capuchin monkeys (Cebus apella nigritus)

    Get PDF
    Many mammalian and avian species produce conspicuous vocalizations upon encountering a predator, but vary their calling based on risk urgency and/or predator type. Calls falling into the latter category are termed “functionally referential” if they also elicit predator-appropriate reactions in listeners. Functionally referential alarm calling has been well documented in a number of Old World monkeys and lemurs, but evidence among Neotropical primates is limited. This study investigates the alarm call system of tufted capuchin monkeys (Cebus apella nigritus) by examining responses to predator and snake decoys encountered at various distances (reflecting differences in risk urgency). Observations in natural situations were conducted to determine if predator-associated calls were given in additional contexts. Results indicate the use of three call types. “Barks” are elicited exclusively by aerial threats, but the call most commonly given to terrestrial threats (the “hiccup”) is given in nonpredatory contexts. The rate in which this latter call is produced reflects risk urgency. Playbacks of these two call types indicate that each elicits appropriate antipredator behaviors. The third call type, the “peep,” seems to be specific to terrestrial threats, but it is unknown if the call elicits predator-specific responses. “Barks” are thus functionally referential aerial predator calls, while “hiccups” are better seen as generalized disturbance calls which reflect risk urgency. Further evidence is needed to draw conclusions regarding the “peep.” These results add to the evidence that functionally referential aerial predator alarm calls are ubiquitous in primates, but that noncatarrhine primates use generalized disturbance calls in response to terrestrial threats

    Interaction of β-Sheet Folds with a Gold Surface

    Get PDF
    The adsorption of proteins on inorganic surfaces is of fundamental biological importance. Further, biomedical and nanotechnological applications increasingly use interfaces between inorganic material and polypeptides. Yet, the underlying adsorption mechanism of polypeptides on surfaces is not well understood and experimentally difficult to analyze. Therefore, we investigate here the interactions of polypeptides with a gold(111) surface using computational molecular dynamics (MD) simulations with a polarizable gold model in explicit water. Our focus in this paper is the investigation of the interaction of polypeptides with β-sheet folds. First, we concentrate on a β-sheet forming model peptide. Second, we investigate the interactions of two domains with high β-sheet content of the biologically important extracellular matrix protein fibronectin (FN). We find that adsorption occurs in a stepwise mechanism both for the model peptide and the protein. The positively charged amino acid Arg facilitates the initial contact formation between protein and gold surface. Our results suggest that an effective gold-binding surface patch is overall uncharged, but contains Arg for contact initiation. The polypeptides do not unfold on the gold surface within the simulation time. However, for the two FN domains, the relative domain-domain orientation changes. The observation of a very fast and strong adsorption indicates that in a biological matrix, no bare gold surfaces will be present. Hence, the bioactivity of gold surfaces (like bare gold nanoparticles) will critically depend on the history of particle administration and the proteins present during initial contact between gold and biological material. Further, gold particles may act as seeds for protein aggregation. Structural re-organization and protein aggregation are potentially of immunological importance
    • …
    corecore