830 research outputs found
Microstructured superhydrorepellent surfaces: Effect of drop pressure on fakir-state stability and apparent contact angles
In this paper we present a generalized Cassi-Baxter equation to take into
account the effect of drop pressure on the apparent contact angle theta_{app}.
Also we determine the limiting pressure p_{W} which causes the impalement
transition to the Wenzel state and the pull-off pressure p_{out} at which the
drop detaches from the substrate. The calculations have been carried out for
axial-symmetric pillars of three different shapes: conical, hemispherical
topped and flat topped cylindrical pillars. Calculations show that, assuming
the same pillar spacing, conical pillars may be more incline to undergo an
impalement transition to the Wenzel state, but, on the other hand, they are
characterized by a vanishing pull-off pressure which causes the drop not to
adhere to the substrate and therefore to detach very easily. We infer that this
property should strongly reduce the contact angle hysteresis as experimentally
osberved in Ref. \cite{Martines-Conical-Shape}. It is possible to combine large
resistance to impalement transition (i.e. large value of p_{W}) and small (or
even vanishing) detaching pressure p_{out} by employing cylindrical pillars
with conical tips. We also show that depending on the particular pillar
geometry, the effect of drop pressure on the apparent contact angle theta_{app}
may be more or less significant. In particular we show that in case of conical
pillars increasing the drop pressure causes a significant decrease of
theta_{app} in agreement with some experimental investigations
\cite{LafunaTransitio}, whereas theta_{app} slightly increases for
hemispherical or flat topped cylindrical pillars.Comment: 21 pages, 13 figure
Longitudinal and transversal flow over a cavity containing a second immiscible fluid
An analytical solution for the flow field of a shear flow over a rectangular
cavity containing a second immiscible fluid is derived. While flow of a
single-phase fluid over a cavity is a standard case investigated in fluid
dynamics, flow over a cavity which is filled with a second immiscible fluid,
has received little attention. The flow filed inside the cavity is considered
to define a boundary condition for the outer flow which takes the form of a
Navier slip condition with locally varying slip length. The slip-length
function is determined from the related problem of lid-driven cavity flow.
Based on the Stokes equations and complex analysis it is then possible to
derive a closed analytical expression for the flow field over the cavity for
both the transversal and the longitudinal case. The result is a comparatively
simple function, which displays the dependence of the flow field on the cavity
geometry and the medium filling the cavity. The analytically computed flow
field agrees well with results obtained from a numerical solution of the
Navier-Stokes equations. The studies presented in this article are of
considerable practical relevance, for example for the flow over
superhydrophobic surfaces.Comment: http://journals.cambridge.or
Anomalous acoustic reflection on a sliding interface or a shear band
We study the reflection of an acoustic plane wave from a steadily sliding
planar interface with velocity strengthening friction or a shear band in a
confined granular medium. The corresponding acoustic impedance is utterly
different from that of the static interface. In particular, the system being
open, the energy of an in-plane polarized wave is no longer conserved, the work
of the external pulling force being partitioned between frictional dissipation
and gain (of either sign) of coherent acoustic energy. Large values of the
friction coefficient favor energy gain, while velocity strengthening tends to
suppress it. An interface with infinite elastic contrast (one rigid medium) and
V-independent (Coulomb) friction exhibits spontaneous acoustic emission, as
already shown by M. Nosonovsky and G.G. Adams (Int. J. Ing. Sci., {\bf 39},
1257 (2001)). But this pathology is cured by any finite elastic contrast, or by
a moderately large V-strengthening of friction.
We show that (i) positive gain should be observable for rough-on-flat
multicontact interfaces (ii) a sliding shear band in a granular medium should
give rise to sizeable reflection, which opens a promising possibility for the
detection of shear localization.Comment: 13 pages, 10 figure
Future perspectives on sustainable tribology
AbstractThis paper highlights the future perspectives of sustainable tribology by examining the economic, environmental and social impact of three tribological case studies. One case study examines the sustainability and durability of micro-CHP systems looking the tribological phenomena generated within a scroll expander system. The scroll is the main part of a specific micro-CHP system and experiences wear and cavitation damage. The tribological optimization of the scroll expander improves the sustainability of the micro-CHP unit while it has a serious economic and environmental impact to the consumers and to the society in general. Another case study is focused on friction and wear performance of lifeboat launch slipways. The causes of high friction and wear during the RNLI's lifeboat launches along an inclined slipway are investigated with a view to reducing the environmental impact due to slipway panel wear and lubricant release into the marine environment. The project encompasses the sustainable design of slipway panels using design modifications based on tribological investigations to double their lifespan, while environmental and economic impact was significantly reduced by the use of biodegradable greases and water as lubricants. The final case study involves an investigation of recycled plastic materials to replace polyurethane used on skateboard wheels, scooters and similar applications. Polyurethane (PU) is difficult to recycle. With the dwindling resources and environmental problems facing the world today, recycling for both waste reduction and resource preservation has become an increasingly important aspect of sustainability. The tribological results showed that recycled polycarbonate plastic can effectively act as a substitute to polyurethane wheels. Moreover, sustainability considerations showing the environmental benefits of the use of recycled plastics over PU include reducing the CO2 footprint by 50% and the energy consumed by 60%, among other benefits. These case studies emphasise the importance of sustainable tribology in our epoch showing that increased sustainability performance can be achieved through tribology to a significant extent in many cases, providing stability to our world and more viable long term growth to our societies
Antireflection silicon structures with hydrophobic property fabricated by three-beam laser interference
This paper demonstrates antireflective structures on silicon wafer surfaces with hydrophobic property fabricated by three-beam laser interference. In this work, a three-beam laser interference system was set up to generate periodic micro-nano hole structures with hexagonal distributions. Compared with the existing technologies, the array of hexagonally-distributed hole structures fabricated by three-beam laser interference reveals a design guideline to achieve considerably low solar-weighted reflectance (SWR) in the wavelength range of 300-780 nm. The resulting periodic hexagonally-distributed hole structures have shown extremely low SWR (1.86%) and relatively large contact angle (140°) providing with a self-cleaning capability on the solar cell surface
Self-assembled levitating clusters of water droplets: pattern-formation and stability
Water forms ordered hexagonally symmetric structures (snow crystals) in its solid state, however not as liquid. Typically, mists and clouds are composed of randomly moving small droplets lacking any ordered structure. Self-organized hexagonally patterned microdroplet clusters over locally heated water surfaces have been recently observed. However, many aspects of the phenomenon are far from being well understood including what determines droplets size, arrangement, and the distance between them. Here we show that the Voronoi entropy of the cluster tends to decrease indicating to their selforganization, while coupling of thermal effects and mechanical forces controls the stability of the clusters. We explain the balance of the long-range attraction and repulsion forces which stabilizes the cluster patterns and established the range of parameters, for which the clusters are stable. The cluster is a dissipative structure similar to self-organized Rayleigh–Bénard convective cells. Microdroplet formation plays a role in a variety effects from mist and clouds to aerosols. We anticipate that the discovery of the droplet cluster phenomenon and its explanation will provide new insights on the fundamental physical and chemical processes such as microdroplet role in reaction catalysis in nature as well as new tools for aerosol analysis and microfluidic applications
- …