19 research outputs found

    HWCVD Technology Development Addressed to the High Rate Deposition of mi-c-Si:H

    Get PDF
    The first block of this thesis deals with the study of the degradation process of tungsten catalytic filaments in the field of silicon deposition with the Hot Wire Chemical Vapour Deposition (HWCVD) technique. The development of technological solutions addressed to the filaments protection will also be dealt as well as the design, fabrication and performance of a novel system for the automatic replacement of used filaments in a HWCVD reactor. The second block deals with the scaling up of HWCVD towards large area deposition and the existence of a scaling law that may allow the deposition of microcrystalline silicon (碌c-Si:H) at high rate preserving the material quality.El primer bloc d'aquesta tesi es centra en l'estudi del proc茅s de degradaci贸 dels filaments de tungst猫 catal铆tics en el camp de la deposici贸 de silici amb la t猫cnica de dip貌sit qu铆mic en fase vapor assistida per filament calent (HWCVD). Tamb茅 es tractar脿 el desenvolupament de solucions tecnol貌giques dirigides a la protecci贸 filaments i al reempla莽ament d鈥檃quests de forma autom脿tica, sense interrompre el proc茅s. El segon bloc tracta sobre l鈥檈scalat de la t猫cnica HWCVD cap a gran 脿rea i sobre l'exist猫ncia d'una llei d'escala que permeti la deposici贸 de silici microcristal鈥铆 a altes velocitats, tot preservant la qualitat del material

    Technological solution for the automatic replacement of the catalytic filaments in HWCVD

    Get PDF
    The degradation of the catalytic filaments is the main factor limiting the industrial implementation of the hot wire chemical vapor deposition (HWCVD) technique. Up to now, no solution has been found to protect the catalytic filaments used in HWCVD without compromising their catalytic activity. Probably, the definitive solution relies on the automatic replacement of the catalytic filaments. In this work, the results of the validation tests of a new apparatus for the automatic replacement of the catalytic filaments are reported. The functionalities of the different parts have been validated using a 0.2 mm diameter tungsten filament under uc-Si:H deposition conditions

    Degradation of thin tungsten filaments at high temperature in HWCVD

    Get PDF
    The degradation of the filaments is usually studied by checking the silicidation or carbonization status of the refractory metal used as catalysts, and their effects on the structural stability of the filaments. In this paper, it will be shown that the catalytic stability of a filament heated at high temperature is much shorter than its structural lifetime. The electrical resistance of a thin tungsten filament and the deposition rate of the deposited thin film have been monitored during the filament aging. It has been found that the deposition rate drops drastically once the quantity of dissolved silicon in the tungsten reaches the solubility limit and the silicides start precipitating. This manuscript concludes that the catalytic stability is only guaranteed for a short time and that for sufficiently thick filaments it does not depend on the filament radius

    The configurational energy gap between amorphous and crystalline silicon

    Get PDF
    The crystallization enthalpy of pure amorphous silicon (a-Si) and hydrogenated a-Si was measured by differential scanning calorimetry (DSC) for a large set of materials deposited from the vapour phase by different techniques. Although the values cover a wide range (200-480 J/g), the minimum value is common to all the deposition techniques used and close to the predicted minimum strain energy of relaxed a-Si (240 卤 25 J/g). This result gives a reliable value for the configurational energy gap between a-Si and crystalline silicon. An excess of enthalpy above this minimum value can be ascribed to coordination defects

    Hot wire chemical vapor deposition: limits and opportunities of protecting the tungsten catalyzer from silicide with a cavity

    Get PDF
    Hot Wire Chemical Vapor Deposition (HW-CVD) is one of the most promising techniques for depositing the intrinsic microcrystalline silicon layer for the production of micro-morph solar cells. However, the silicide formation at the colder ends of the tungsten wire drastically reduces the lifetime of the catalyzer, thus limiting its industrial exploitation. A simple but interesting strategy to decrease the silicide formation is to hide the electrical contacts of the catalyzer in a long narrow cavity which reduces the probability of the silane molecules to reach the colder ends of the wire. In this paper, the working mechanism of the cavity is elucidated. Measurements of the thickness profile of the silicon deposited in the internal walls of the cavity have been compared with those predicted using a simple diffusion model based on the assumption of Knudsen flow. A lifetime study of the protected and unprotected wires has been carried out. The different mechanisms which determine the deterioration of the catalyzer have been identified and discussed

    Hot wire configuration for depositing device grade nano-crystalline silicon at high deposition rate

    Get PDF
    The University of Barcelona is developing a pilot-scale hot wire chemical vapor deposition (HW-CVD) set up for the deposition of nano-crystalline silicon (nc-Si:H) on 10 cm 脳 10 cm glass substrate at high deposition rate. The system manages 12 thin wires of 0.15-0.2 mm diameter in a very dense configuration. This permits depositing very uniform films, with inhomogeneities lower than 2.5%, at high deposition rate (1.5-3 nm/s), and maintaining the substrate temperature relatively low (250 掳C). The wire configuration design, based on radicals' diffusion simulation, is exposed and the predicted homogeneity is validated with optical transmission scanning measurements of the deposited samples. Different deposition series were carried out by varying the substrate temperature, the silane to hydrogen dilution and the deposition pressure. By means of Fourier transform infrared spectroscopy (FTIR), the evolution in time of the nc-Si:H vibrational modes was monitored. Particular importance has been given to the study of the material stability against post-deposition oxidation

    Technological solution for the automatic replacement of the catalytic filaments in HWCVD

    Get PDF
    The degradation of the catalytic filaments is the main factor limiting the industrial implementation of the hot wire chemical vapor deposition (HWCVD) technique. Up to now, no solution has been found to protect the catalytic filaments used in HWCVD without compromising their catalytic activity. Probably, the definitive solution relies on the automatic replacement of the catalytic filaments. In this work, the results of the validation tests of a new apparatus for the automatic replacement of the catalytic filaments are reported. The functionalities of the different parts have been validated using a 0.2 mm diameter tungsten filament under uc-Si:H deposition conditions

    Hot wire configuration for depositing device grade nano-crystalline silicon at high deposition rate

    No full text
    The University of Barcelona is developing a pilot-scale hot wire chemical vapor deposition (HW-CVD) set up for the deposition of nano-crystalline silicon (nc-Si:H) on 10 cm 脳 10 cm glass substrate at high deposition rate. The system manages 12 thin wires of 0.15-0.2 mm diameter in a very dense configuration. This permits depositing very uniform films, with inhomogeneities lower than 2.5%, at high deposition rate (1.5-3 nm/s), and maintaining the substrate temperature relatively low (250 掳C). The wire configuration design, based on radicals' diffusion simulation, is exposed and the predicted homogeneity is validated with optical transmission scanning measurements of the deposited samples. Different deposition series were carried out by varying the substrate temperature, the silane to hydrogen dilution and the deposition pressure. By means of Fourier transform infrared spectroscopy (FTIR), the evolution in time of the nc-Si:H vibrational modes was monitored. Particular importance has been given to the study of the material stability against post-deposition oxidation

    Degradation of thin tungsten filaments at high temperature in HWCVD

    No full text
    The degradation of the filaments is usually studied by checking the silicidation or carbonization status of the refractory metal used as catalysts, and their effects on the structural stability of the filaments. In this paper, it will be shown that the catalytic stability of a filament heated at high temperature is much shorter than its structural lifetime. The electrical resistance of a thin tungsten filament and the deposition rate of the deposited thin film have been monitored during the filament aging. It has been found that the deposition rate drops drastically once the quantity of dissolved silicon in the tungsten reaches the solubility limit and the silicides start precipitating. This manuscript concludes that the catalytic stability is only guaranteed for a short time and that for sufficiently thick filaments it does not depend on the filament radius

    Real-time monitoring of the silicidation process of tungsten filaments at high temperature used as catalysers for silane decomposition

    No full text
    The scope of this work is the systematic study of the silicidation process affecting tungsten filaments at high temperature (1900潞C) used for silane decomposition in the hot-wire chemical vapour deposition technique (HWCVD). The correlation between the electrical resistance evolution of the filaments, Rfil(t), and the different stages of the their silicidation process is exposed. Said stages correspond to: the rapid formation of two WSi2 fronts at the cold ends of the filaments and their further propagation towards the middle of the filaments; and, regarding the hot central portion of the filaments: a initial stage of silicon dissolution into the tungsten bulk, with a random duration for as-manufactured filaments, followed by the inhomogeneous nucleation of W5Si3 (which is later replaced by WSi2) and its further growth towards the filaments core. An electrical model is used to obtain real-time information about the current status of the filaments silicidation process by simply monitoring their Rfil(t) evolution during the HWCVD process. It is shown that implementing an annealing pre-treatment to the filaments leads to a clearly repetitive trend in the monitored Rfil(t) signatures. The influence of hydrogen dilution of silane on the filaments silicidation process is also discussed
    corecore