17 research outputs found

    Ophyiulus in Victoria: results of millipede surveys from south-eastern Australia

    Get PDF
    The composition and ecology of the millipede fauna of Victoria remain poorly understood. We collected millipedes as part of a series of ecological arthropod surveys across south-eastern Australia, focusing mainly on Victoria. These samples almost exclusively contained millipedes from the introduced order Julida. We pursued species identification of the julids when it became apparent there were species other than the well-recorded Ommatoiulus moreleti (Lucas, 1860) (Portuguese millipede) in the samples. The majority of specimens were O. moreleti, but we also detected at least one species of Cylindroiulus Verhoeff, 1894, as well as an Ophyiulus Berlese, 1884, species, specimens of which have been identified as Ophyiulus cf. targionii. These are the first Ophyiulus records for Victoria to our knowledge. We present preliminary data on the abundance through the year of Ophyiulus. This is the first study to examine this species in Victoria and little is currently known about its likely impact on agriculture or on native species. Monitoring and research of the species in the future is therefore warranted

    Green roof and ground-level invertebrate communities are similar and are driven by building height and landscape context

    Get PDF
    Green roofs are increasingly promoted for urban biodiversity conservation, but the value of these novel habitats is uncertain. We aimed to test two hypotheses: (i) green roofs can support comparable invertebrate family and order richness, composition and abundances to ground-level habitats and (ii) green roofs planted with native species from local habitats will support a richer invertebrate community at family and order level than other green roofs. We sampled the invertebrate community on green roofs dominated by native grassland or introduced succulent species in Melbourne, Australia, and compared these to the invertebrate community in ground-level sites close by, and sites with similar vegetation types. The only significant differences between the invertebrate communities sampled on green roofs and ground-level habitats were total abundance and fly family richness, which were higher in ground-level habitats. Second hypothesis was not supported as invertebrate communities on green roofs supporting a local vegetation community and those planted with introduced Sedum and other succulents were not detectably different at family level. The per cent cover of green space surrounding each site was consistently important in predicting the richness and abundance of the invertebrate families we focussed on, while roof height, site age and size were influential for some taxa. Our results suggest that invertebrate communities of green roofs in Melbourne are driven largely by their surrounding environment and consequently the effectiveness of green roofs as invertebrate habitat is highly dependent on location and their horizontal and vertical connection to other habitats.City of Melbourne for funds that enabled Nathan Brown to identify the Diptera, Hemiptera and Hymenoptera families. C.G.T. received support from Australia Research Council Linkage Grant LP0990383 and the Clean Air and Urban Landscapes Hub, which was funded by the Australian Government’s National Environmental Science Program. B.N. received support from the Natural Environment Research Council (grant number NE/J015067/1)

    Urban forest invertebrates : how they shape and respond to the urban environment

    Get PDF
    Invertebrates comprise the most diversified animal group on Earth. Due to their long evolutionary history and small size, invertebrates occupy a remarkable range of ecological niches, and play an important role as "ecosystem engineers" by structuring networks of mutualistic and antagonistic ecological interactions in almost all terrestrial ecosystems. Urban forests provide critical ecosystem services to humans, and, as in other systems, invertebrates are central to structuring and maintaining the functioning of urban forests. Identifying the role of invertebrates in urban forests can help elucidate their importance to practitioners and the public, not only to preserve biodiversity in urban environments, but also to make the public aware of their functional importance in maintaining healthy greenspaces. In this review, we examine the multiple functional roles that invertebrates play in urban forests that contribute to ecosystem service provisioning, including pollination, predation, herbivory, seed and microorganism dispersal and organic matter decomposition, but also those that lead to disservices, primarily from a public health perspective, e.g., transmission of invertebrate-borne diseases. We then identify a number of ecological filters that structure urban forest invertebrate communities, such as changes in habitat structure, increased landscape imperviousness, microclimatic changes and pollution. We also discuss the complexity of ways that forest invertebrates respond to urbanisation, including acclimation, local extinction and evolution. Finally, we present management recommendations to support and conserve viable and diverse urban forest invertebrate populations into the future.Peer reviewe

    Urban meadows as an alternative to short mown grassland: Effects of composition and height on biodiversity

    Get PDF
    There are increasing calls to provide greenspace in urban areas, yet the ecological quality, as well as quantity, of greenspace is important. Short mown grassland designed for recreational use is the dominant form of urban greenspace in temperate regions but requires considerable maintenance and typically provides limited habitat value for most taxa. Alternatives are increasingly proposed, but the biodiversity potential of these is not well understood. In a replicated experiment across six public urban greenspaces we used nine different perennial meadow plantings to quantify the relative roles of floristic diversity and height of sown meadows on the richness and composition of three taxonomic groups – plants, invertebrates and soil microbes. We found that all meadow treatments were colonised by plant species not sown in the plots, suggesting that establishing sown meadows does not preclude further locally determined grassland development if management is appropriate. Colonising species were rarer in taller and more diverse plots, indicating competition may limit invasion rates. Urban meadow treatments contained invertebrate and microbial communities that differed from mown grassland. Invertebrate taxa responded to changes in both height and richness of meadow vegetation, but most orders were more abundant where vegetation height was longer than mown grassland. Order richness also increased in longer vegetation and Coleoptera family richness increased with plant diversity in summer. Microbial community composition seems sensitive to plant species composition at the soil surface (0–10 cm), but in deeper soils (11–20 cm) community variation was most responsive to plant height, with bacteria and fungi responding differently. In addition to improving local residents’ satisfaction, native perennial meadow plantings can produce biologically diverse grasslands that support richer and more abundant invertebrate communities, and restructured plant, invertebrate and soil microbial communities compared with short mown grassland. Our results suggest that diversification of urban greenspace by planting urban meadows in place of some mown amenity grassland is likely to generate substantial biodiversity benefits, with a mosaic of meadow types likely to maximise such benefits

    Urban meadows as an alternative to short mown grassland: effects of composition and height on biodiversity

    Get PDF
    There are increasing calls to provide greenspace in urban areas, yet the ecological quality, as well as quantity, of greenspace is important. Short mown grassland designed for recreational use is the dominant form of urban greenspace in temperate regions but requires considerable maintenance and typically provides limited habitat value for most taxa. Alternatives are increasingly proposed, but the biodiversity potential of these is not well understood. In a replicated experiment across six public urban greenspaces, we used nine different perennial meadow plantings to quantify the relative roles of floristic diversity and height of sown meadows on the richness and composition of three taxonomic groups: plants, invertebrates, and soil microbes. We found that all meadow treatments were colonized by plant species not sown in the plots, suggesting that establishing sown meadows does not preclude further locally determined grassland development if management is appropriate. Colonizing species were rarer in taller and more diverse plots, indicating competition may limit invasion rates. Urban meadow treatments contained invertebrate and microbial communities that differed from mown grassland. Invertebrate taxa responded to changes in both height and richness of meadow vegetation, but most orders were more abundant where vegetation height was longer than mown grassland. Order richness also increased in longer vegetation and Coleoptera family richness increased with plant diversity in summer. Microbial community composition seems sensitive to plant species composition at the soil surface (0–10 cm), but in deeper soils (11–20 cm) community variation was most responsive to plant height, with bacteria and fungi responding differently. In addition to improving local residents’ site satisfaction, native perennial meadow plantings can produce biologically diverse grasslands that support richer and more abundant invertebrate communities, and restructured plant, invertebrate, and soil microbial communities compared with short mown grassland. Our results suggest that diversification of urban greenspace by planting urban meadows in place of some mown amenity grassland is likely to generate substantial biodiversity benefits, with a mosaic of meadow types likely to maximize such benefits.N/

    Definitions of biodiversity from urban gardeners

    No full text
    Living in urban environments can leave people disconnected from nature and less likely to engage with biodiversity conservation. Within urban areas, residential gardens can occupy large proportions of greenspace and provide important habitat for biodiversity. Understanding the views and knowledge of garden owners who have collective responsibility for managing these areas is therefore important. We aimed to understand how urban garden owners understand biodiversity. We surveyed garden owners in Derby, UK, across 20 areas spanning a socioeconomic spectrum. Residents were asked to explain their understanding of ‘biodiversity’ in a short definition format. Responses were classified using thematic and word frequency analyses. Of 255 respondents, approximately one third were unable to provide a definition. From the definitions provided, themes that emerged in frequency order were: variety of species or environments; coexistence of organisms; conservation of nature; a synonym for habitat; and uncommon answers not clearly related to biodiversity. Members of wildlife or gardening charities were more likely than non-members to say they could define biodiversity and to use specific taxonomic terms. We detected no difference between keen and less keen gardeners. These short-form responses captured many themes longer and/or qualitative assessments have identified about people’s understanding of biodiversity and illustrate a diversity and, in some cases, a depth of understanding of the concepts of biodiversity, without necessarily adhering to the formal definition. Given the variety of understanding, at this critical period, technical terms, even common ones, should be used with caution and with an open mind about how people interpret them.This project was funded by the Environmental Sciences Research Centre at the University of Derb

    Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes.

    No full text
    Warming associated with urban development will be exacerbated in future years by temperature increases due to climate change. The strategic implementation of urban green infrastructure (UGI) e.g. street trees, parks, green roofs and facades can help achieve temperature reductions in urban areas while delivering diverse additional benefits such as pollution reduction and biodiversity habitat. Although the greatest thermal benefits of UGI are achieved in climates with hot, dry summers, there is comparatively little information available for land managers to determine an appropriate strategy for UGI implementation under these climatic conditions. We present a framework for prioritisation and selection of UGI for cooling. The framework is supported by a review of the scientific literature examining the relationships between urban geometry, UGI and temperature mitigation which we used to develop guidelines for UGI implementation that maximises urban surface temperature cooling. We focus particularly on quantifying the cooling benefits of four types of UGI: green open spaces (primarily public parks), shade trees, green roofs, and vertical greening systems (green walls and facades) and demonstrate how the framework can be applied using a case study from Melbourne, Australia.This paper arose from a project funded by the Victorian Centre for Climate Change Adaptation Research (VCCCAR). The City of Port Phillip made available the thermal imagery data and supporting GIS layers

    Insulin-like growth factor binding protein 2: NMR analysis and structural characterization of the N-terminal domain

    No full text
    The insulin-like growth factor binding proteins are a family of six proteins (IGFBP-1 to -6) that bind insulin-like growth factors-I and -II (IGF-I/II) with high affinity. In addition to regulating IGF actions, IGFBPs have IGF-independent functions. IGFBP-2, the largest member of this family, is over-expressed in many cancers and has been proposed as a possible target for the development of novel anti-cancer therapeutics. The IGFBPs have a common architecture consisting of conserved N- and C-terminal domains joined by a variable linker domain. The solution structure and dynamics of the C-terminal domain of human IGFBP-2 have been reported (Kuang Z. et al. J. Mol. Biol. 364, 690-704, 2006) but neither the N-domain (N-BP-2) nor the linker domain have been characterised. Here we present NMR resonance assignments for human N-BP-2, achieved by recording spectra at low protein concentration using non-uniform sampling and maximum entropy reconstruction. Analysis of secondary chemical shifts shows that N-BP-2 possesses a secondary structure similar to that of other IGFBPs. Although aggregation hampered determination of the solution structure for N-BP-2, a homology model was generated based on the high degree of sequence and structure homology exhibited by the IGFBPs. This model was consistent with experimental NMR and SAXS data and displayed some unique features such as a Pro/Ala-rich non-polar insert, which formed a flexible solvent-exposed loop on the surface of the protein opposite to the IGF-binding interface. NMR data indicated that this loop could adopt either of two alternate conformations in solution an entirely flexible conformation and one containing nascent helical structure. This loop and an adjacent poly-proline sequence may comprise a potential SH3 domain interaction site for binding to other proteins. (C) 2011 Elsevier Masson SAS. All rights reserved

    Biodiversity and environmental stressors along urban walking routes

    Get PDF
    There is increasing focus on designing liveable cities that promote walking. However, urban walking routes can expose people to adverse environmental conditions that reduce health, well-being and biodiversity. Our primary objective is to assess how urban form is associated with environmental quality, including biodiversity, for people moving through urban spaces. We assess a range of environmental conditions that influence human health and biodiversity (temperature, noise and particulate pollution) and biodiversity of three taxa (trees, butterflies and birds) along 700 m public walking routes embedded in 500 m x 500 m grid cells across three UK towns. Cells are selected using random stratification across an urbanisation intensity gradient. Walking routes in more built-up areas were noisier and hotter; noise levels further increased in areas with more industrial land-use and large roads. There was no evidence of vegetation mitigating noise or temperature, but there was some evidence that increased vegetation cover mitigated small particulate pollution. Walking routes in more built-up environments had lower butterfly, bird and native tree species richness, and reduced butterfly abundance. Large roads were associated with reduced bird species richness and increased noise was associated with reduced bird abundance. Most specific measures of vegetation in the surrounding matrix (median patch size, structural complexity at 1.5 m resolution) were not detectably associated with biodiversity along walking routes, indicating minimal beneficial spill-over. Increased garden cover in the surrounding matrix was associated with less abundant and less species-rich butterfly communities. Our results highlight considerable heterogeneity in the environmental quality of urban walking routes and pedestrians’ potential to experience biodiversity along these routes, driven by reduced quality in areas with more built cover. A greater focus is needed on mitigating adverse effects of specific features of the built environment (roads, industrial areas, noise) surrounding walking routes to enhance the co-benefits of more biodiversity and healthier conditions for pedestrians.
    corecore