
https://helda.helsinki.fi

Urban forest invertebrates : how they shape and respond to the

urban environment

Kotze, D. Johan

2022-12

Kotze , D J , Lowe , E C , MacIvor , J S , Ossola , A , Norton , B A , Hochuli , D F , Mata , L ,

Moretti , M , Gagne , S A , Handa , I T , Jones , T M , Threlfall , C G & Hahs , A K 2022 , '

Urban forest invertebrates : how they shape and respond to the urban environment ' , Urban

Ecosystems , vol. 25 , pp. 1589-1609 . https://doi.org/10.1007/s11252-022-01240-9

http://hdl.handle.net/10138/352472

https://doi.org/10.1007/s11252-022-01240-9

cc_by

publishedVersion

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.



Vol.:(0123456789)1 3

https://doi.org/10.1007/s11252-022-01240-9

Urban forest invertebrates: how they shape and respond to the urban 
environment

D. Johan Kotze1  · Elizabeth C. Lowe2  · J. Scott MacIvor3  · Alessandro Ossola2,4,7  · Briony A. Norton5  · 
Dieter F. Hochuli6  · Luis Mata7  · Marco Moretti8  · Sara A. Gagné9 · I. Tanya Handa10  · Therésa M. Jones11  · 
Caragh G. Threlfall12  · Amy K. Hahs7 

Accepted: 27 April 2022 
© The Author(s) 2022

Abstract
Invertebrates comprise the most diversified animal group on Earth. Due to their long evolutionary history and small size, 
invertebrates occupy a remarkable range of ecological niches, and play an important role as “ecosystem engineers” by struc-
turing networks of mutualistic and antagonistic ecological interactions in almost all terrestrial ecosystems. Urban forests 
provide critical ecosystem services to humans, and, as in other systems, invertebrates are central to structuring and maintain-
ing the functioning of urban forests. Identifying the role of invertebrates in urban forests can help elucidate their importance 
to practitioners and the public, not only to preserve biodiversity in urban environments, but also to make the public aware of 
their functional importance in maintaining healthy greenspaces. In this review, we examine the multiple functional roles that 
invertebrates play in urban forests that contribute to ecosystem service provisioning, including pollination, predation, her-
bivory, seed and microorganism dispersal and organic matter decomposition, but also those that lead to disservices, primarily 
from a public health perspective, e.g., transmission of invertebrate-borne diseases. We then identify a number of ecological 
filters that structure urban forest invertebrate communities, such as changes in habitat structure, increased landscape imper-
viousness, microclimatic changes and pollution. We also discuss the complexity of ways that forest invertebrates respond 
to urbanisation, including acclimation, local extinction and evolution. Finally, we present management recommendations to 
support and conserve viable and diverse urban forest invertebrate populations into the future.

Keywords Arachnids · Biodiversity · Disturbance · Ecosystem services · Functional groups · Insects · Life cycle · Life 
stages · Pollution · Ecological networks · Urban ecology

Introduction

Terrestrial invertebrates, including insects, mites, spiders, 
millipedes, centipedes, snails and earthworms amongst 
many others, comprise the most diversified animal group 
on Earth, accounting for as much as 80% of all known ter-
restrial animal species (Zhang 2011). They are characterised 
by the lack of an internal bone skeleton, instead showing a 
remarkable breadth in body plans ranging from hard exo-
skeletons (e.g., insects, particularly beetles) to hydrostatic 
skeletons (e.g., earthworms). Invertebrates occupy a vast 
range of ecological niches and microhabitats across terres-
trial ecosystems and play an important role in structuring 

networks of mutualistic and antagonistic ecological interac-
tions in almost all terrestrial ecosystems (Ings et al. 2009), 
thus contributing to key ecosystem services including pol-
lination, nutrient recycling and pest control (Noriega et al. 
2018). For these reasons alone, terrestrial invertebrates have 
long been recognised as ‘the little things that run the world’ 
(Wilson 1987).

Given their role in physically shaping the environment in 
which they live, and their capacity to change the availability 
of resources for other species, invertebrates can be consid-
ered as “ecosystem engineers” (Jones et al. 1994). While 
some invertebrates are intentional engineers that directly 
alter their environment (e.g., ants and termites who create 
a network of above- and belowground nests), other species 
are accidental engineers that modify habitat indirectly or as 
a by-product of their activities (e.g., earthworms that create  * D. Johan Kotze 
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temporary tunnels as they move through the soil and provide 
additional nutrients in the form of excretions).

Here we focus on the role of invertebrates in shaping urban 
forests and in providing key ecosystem functions and under-
lying services. We define urban forests as self-regenerating 
communities with a tree canopy that exist as remnant patches 
of formerly contiguous habitat now surrounded by urban 
areas, as well as communities composed of planted trees, such 
as those in gardens, parks and along streets (see Alvey 2006). 
Urban forests in their most complex form are composed of an 
upper tree canopy, one or more understory layers, a ground-
cover layer and soil layers (Jim 2017). They are also one of 
the dominant types of natural areas in cities ‒ by one estimate, 
remnant forests account for 68% of parkland area across the 
most populous cities in the USA (Pregitzer et al. 2021). There 
is a large amount of variation in the structure and species com-
position of urban forests, ranging from structurally complex 
native forest patches to highly simplified systems dominated 
by a few exotic species (Threlfall et al. 2016). In many con-
texts, urban forests constitute novel ecosystems (sensu Hobbs 
et al. 2006), where plants and animals that do not share an 
evolutionary history now co-exist, including many invasive 
species. Urban forests provide a plethora of benefits to citi-
zens, including environmental ecosystem services, i.e., the 
regulation of air, water, soil and climate, the provision of habi-
tat and other goods and services (Roeland et al. 2019) and 
cultural ecosystem services, including physical, psychological 
and social health benefits and economic development (Nesbitt 
et al. 2017). Invertebrates play a critical role in the functioning 
of urban forests and therefore in providing these benefits to 
urban inhabitants.

In this review, we describe the many roles invertebrates 
play in structuring and maintaining the functioning of urban 
forests and argue for the conservation of urban forests and 
their invertebrates in the Anthropocene, the current epoch 
characterised by climate change, urban densification and 
habitat loss, and the apparent mass loss of invertebrate 
biomass worldwide (see Hallmann et al. 2017; Sánchez-
Bayo and Wyckhuys 2019; Cardoso et al. 2020; Harvey 
et al. 2020, but see Macgregor et al. 2019; Crossley et al. 
2020). The review covers four broad subject areas related 
to urban forest invertebrates, with the aim of generating a 
compendium of evidence to be used in the study, planning 
and management of urban forests. The subject areas are: 1) 
the diversity and complexity of invertebrate communities 
in urban forests with a focus on their roles in the provision-
ing of various ecosystem services and their contributions 
to people (Díaz et al. 2018); 2) the major ecological filters 
affecting species assemblages in urban areas; 3) our current 
understanding of how urban forest invertebrates respond to 
these filters and the consequences of these responses for eco-
system service provisioning; and 4) how we can incorporate 
invertebrates into urban design and management to deliver 

healthier and more taxonomically and functionally resilient 
urban forests for the future. This review focuses on evidence 
in the literature of forest invertebrate community composi-
tion and change in human-modified landscapes.

Functional roles of invertebrates in urban 
forests

Urban forests contain terrestrial and aquatic systems that 
support invertebrates and their complex and varied life cycle 
requirements (Wilbur 1980). Our focus is primarily on ter-
restrial and semi-aquatic invertebrates that occupy the differ-
ent strata within urban forests, from belowground, to ground 
level, to understory, sub-canopy and canopy. Terrestrial 
invertebrates contribute to an array of ecosystem functions 
(Scudder 2009), which translate into a multitude of services 
for humans (Prather et al. 2013), but also disservices (Dunn 
2010), collectively termed nature’s contribution to people 
(NCP) (Díaz et al. 2018). In this section, we explore the 
contributions of invertebrates to urban forests and how these 
forests support invertebrates performing diverse functional 
roles, recognising that some species may perform different 
and multiple functions depending on life cycle stage and that 
their functions in an ecosystem may change over the course 
of their life. For instance, both holometabolous (complete 
metamorphosis) and hemimetabolous (partial metamor-
phosis) insects can experience remarkable ecological niche 
shifts while transitioning between larval/nymph and adult 
life stages, e.g., from herbivorous caterpillars to pollinating 
butterfly and moth adults, or from predacious aquatic nymph 
to predacious aerial dragonflies.

Pollination

Pollination refers to the exchange of genetic material between 
plants via reproduction and is a critical process in the ongo-
ing recruitment of new generations for many plant species. 
Urban forests are a significant habitat resource for pollinators, 
which primarily include bees (Anthophila), flies (Diptera), 
and butterflies and moths (Lepidoptera). For example, wild 
bee communities in remnant forests are stratified vertically 
in the forest canopy (Urban-Mead et al. 2021) and contain 
unique species unable to persist in surrounding built-up areas 
(Harrison et al. 2018; Landsman et al. 2019). Similarly, urban 
parks that contain patches of remnant forest host more but-
terfly species, including woodland specialist species, than 
parks that contain only planted vegetation (e.g., Kitahara 
and Fujii 1997). However, planted trees (including exotics) 
can also be important to pollinators (Buchholz and Kowarik 
2019), confirmed by the barcoding of pollen sampled from 
four bee species in five different EU cities (Müller 2021). 
Additionally, pollinators supported by urban forests provide 
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pollination services both within these forests and to surround-
ing urban and rural habitats.

Urban forests provide significant nesting resources for 
social and solitary wild bees. For instance, social bumble-
bees will forage in private or community gardens, but queens 
construct nests in the less-disturbed soils of urban parks and 
forest edges (McFrederick and LeBuhn 2006). Many cavity-
nesting solitary bees nest in logs, snags and stumps, and 
some, for instance leaf-cutting bees, collect leaves from a 
variety of trees and shrubs to partition their brood cells in 
the nest (MacIvor 2016). Many bees, such as species of the 
genus Xylocopa, depend on dead wood for nesting and are 
potentially limited by these resources in cities, which are 
found nearly exclusively in remnant urban forests. More 
generally, many pollinators rely on a variety of urban land 
covers to complete their complex life cycles, depending on 
remnant forest for nesting and flower-rich urban greens-
paces for foraging. Consequently, ensuring adequate nesting 
resources in urban forests will improve pollination in nearby 
urban greenspaces where it is valued (e.g., in residential and 
community gardens).

In degraded urban forests, many weedy herbaceous spe-
cies may be present, which often provide foraging resources 
for generalist pollinators, including non-native honeybees 
(Threlfall et al. 2015) that might interact with native bees 
of conservation concern (Colla and MacIvor 2017). How-
ever, weeds can have extended flowering periods, or flower 
at different times than native plants, expanding the foraging 
season for many groups of pollinators or potentially ‘fill-
ing the gap’ brought about by climate warming if flowering 
and fruiting phenologies shift and thereby create periods 
of low resource availability (Sherry et al. 2007). It is there-
fore important to value and appropriately manage a range 
of urban forest types, even those perceived as lower quality.

Urban forests also contain many tree and shrub species 
required by moths and butterflies for oviposition and subse-
quent offspring development, and the structure of the forest 
resource in the landscape is important for these taxa. Hardy 
and Dennis (1999) showed that the proportion of forest in 
the urban matrix was positively correlated with butterfly 
diversity. Similarly, Kurylo et al. (2020) found that butterfly 
species richness increased with tree cover across the urban 
matrix, and Lintott et al. (2014) found that moth diversity in 
urban forests increased in larger, older, and less fragmented 
patches.

Predation

Predation is the mechanisms through which populations of 
more abundant species are regulated by complex top-down 
trophic interactions. Invertebrate predator–prey interactions 
are ubiquitous on the forest floor (epigaeic stratum), with 
the main taxa involved including carabid and rove beetles 

(Carabidae, Staphylinidae), ants (Formicidae) and spiders 
(Araneae). These predators exert top-down control on 
the epigaeic and edaphic (soil) invertebrate communities, 
including members of their own guild (i.e., intra-guild pre-
dation), thus contributing an important top-down ecological 
process (predation) that structures communities (Niemelä 
1993; Vidal and Murphy 2018). Invertebrate community 
structure in urban landscapes is, however, different from 
that in rural landscapes, with a general trend of predacious 
groups shifting towards smaller-sized species (see Merckx 
et al. 2018), species capable of flight (Niemelä and Kotze 
2009) and thermophilic species (Piano et al. 2017). These 
differences are in line with the general processes operating 
in urban landscapes, including habitat fragmentation and 
degradation and the urban heat-island effect. Furthermore, 
for the largely predacious carabid beetle taxon, Kotze et al. 
(2012) argued that due to a long history of urban forest frag-
mentation, forest specialist species have all but disappeared 
from boreal cities, like Helsinki, although some remain in 
highly specialized habitats in the city, such as bogs (Noreika 
et al. 2015).

Research on the effects of the apparent decoupling of 
interactions between different trophic levels in urban for-
ests (see Samways et al. 2010) is needed to evaluate the 
functional importance of this dominant epigaeic predatory 
guild. A non-urban example illustrates the complex effects 
of epigaeic predators on ecosystem processes: Lawrence and 
Wise (2000) showed that the removal of spiders from the 
forest floor in a secondary oak-hickory-maple forest in Madi-
son County, Kentucky, USA, resulted in increased densities 
of springtails (Collembola). Yet, rather than an increase in 
the rate of litter decomposition due to a greater number of 
springtails, the authors later reported lower decomposition 
rates in the absence of spiders due, in part, to the release of 
mesopredators of other potentially important decomposer 
groups, such as mites (Acari) or flies (Diptera) (Lawrence 
and Wise 2004).

Urban pest populations often flourish when resources 
such as food or habitat are increased or novel community 
structures result in decreases in competition and/or preda-
tion (Robinson 1996). Changes in the climate of urban areas 
– as well as a lack of natural enemies in the case of exotic 
species – can facilitate pest outbreaks (Meineke et al. 2013) 
and associated economic consequences (Kovacs et al. 2010), 
such as the northward expansion by the emerald ash borer 
(Agrilus planipennis) into Canadian cities and towns (Herms 
and McCullough 2014) and the hemlock woolly adelgid 
(Adelges tsugae) across the Northeastern USA (Paradis 
et al. 2008). Arthropod pests such as some species of mos-
quitoes (Culicidae), cockroaches and termites (Blattodea) 
and beetles (Coleoptera) require extensive management in 
cities because they threaten stored products, public health or 
building structures (Rust 2009). In urban parks and forests, 
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arthropod pests can damage native vegetation (Ciceoi et al. 
2017) through elevated levels of herbivory (Christie and 
Hochuli 2005), or negatively affect native animals through 
predation or competition. However, arthropod pests may be 
subject to top-down control in urban areas, as evidenced by 
decreased foliage loss in large cities across Europe as a result 
of elevated bird predation (Kozlov et al. 2017). Increases in 
urban forest pests are also of concern as they can spread to 
nearby, more natural landscapes, as was shown for the Asian 
long-horned beetle, Anoplophora glabripennis (Dodds and 
Orwig 2011).

As indicated above, biological control has the potential to 
regulate arthropod pests in urban forests, thereby reducing 
the need for pesticides or other control agents and poten-
tially lowering monetary costs in the long term (Olkowski 
et al. 1976; Kenis et al. 2017). The success of biological 
control in urban areas relies on diverse source populations 
of natural enemies, resource accessibility and the ability of 
these organisms to permeate through and persist in the urban 
matrix (Shrewsbury and Leather 2012; Frey et al. 2018). 
For example, urban vegetation fragments can be an impor-
tant source for biological control agents such as spiders 
(Lowe et al. 2018) and parasitoids (Fenoglio et al. 2013), 
and can increase the diversity of predator communities in 
nearby urban gardens (Vergnes et al. 2012). Increasing sup-
plementary resources for natural enemies within the urban 
matrix can also increase biological control services (Ellis 
et al. 2005; Egerer et al. 2018). However, biological control 
can be hard to achieve in urban areas as arthropod preda-
tor communities are often disrupted, limiting their ability 
to counter pest populations (Meineke et al. 2014; Gardiner 
and Harwood 2017).

Herbivory

Herbivory is the process through which the energy plants 
capture from the sun is transferred to the next level of 
organisms, and is therefore an essential process for life on 
Earth. Invertebrate herbivores are a taxonomically diverse 
and speciose ecological group, dominated by juvenile and 
adult stages of moths and butterflies (Lepidoptera), beetles 
(Coleoptera), bugs (Hemiptera), flies (Diptera) and grass-
hoppers and crickets (Orthoptera). Some are specialist feed-
ers on certain host plants, while others have the capacity to 
feed on a wide array of hosts (Forister et al. 2019). The sheer 
diversity and abundance of insect herbivores in urban forests 
make the interactions between plants and insects a key driver 
in productivity and nutrient cycling (Hawlena et al. 2012).

Collectively, invertebrate herbivores in urban forests 
are not a homogenous functional group as they employ an 
extraordinary array of strategies to consume plant material 
(Strong et al. 1984). This variation in foraging strategy has 
equally varied impacts on plants. For example, herbivory 

can result in substantial reductions in photosynthetic area, 
the destruction of reproductive structures such as flowers or 
seeds and, in some instances, can promote disease if inver-
tebrates themselves are disease vectors (e.g., Dutch Elm 
Disease, Ophiostoma ulmi and O. novo-ulmi), or if their 
herbivory creates entry points for pathogens. In an urban 
context, herbivory, when out of control (e.g., gypsy moth 
infestations in Eastern North America [Moeller et al. 1977; 
Schultz and Baldwin 1982]), defoliates trees and impacts 
recreation and the overall appreciation of urban forests (see 
also the “Disservices” section). Therefore, overabundant 
invertebrate herbivores in urban forests are typically per-
ceived as pests, particularly when the extent of defoliation 
is severe and the health of the urban forest is compromised 
(Raupp et al. 2010).

The engineering role of herbivorous insects is most appar-
ent during population outbreaks that threaten the persistence 
of key plant species, especially when outbreaks interact with 
other disturbances such as fire (Parker et al. 2006; Halofsky 
et al. 2020). A range of factors may contribute to elevated 
levels of herbivorous insects and thus herbivory in urban 
forests, such as loss of key predators (Hochuli and Threlfall 
2018) or parasitoids (Peralta et al. 2011; Nelson and Forbes 
2014), changes in landscape structure and configuration 
(Fenoglio et al. 2012; Rossetti et al. 2017) and microclimate 
(Meineke et al. 2013; Dale and Frank 2017). Mechanisms 
driving the population ecology of insect herbivores remain 
a key frontier in identifying how their impacts in urban for-
ests can be assessed (see “Invertebrate responses to urban 
environments” section) and managed (see “Managing urban 
forests for invertebrates” section).

Dispersal of seeds and microorganisms

As plants and microbes are sessile, their main mechanism 
for movement into new locations is through the dispersal 
of seeds, spores and other propagules. While some ant spe-
cies are known for playing an important role in seed dis-
persal in urban forests (Thompson and Mclachlan 2007), 
there is emerging evidence that seeds are also dispersed by 
other insect taxa such as hornets (Vespa spp.) (Chen et al. 
2017), crickets (Grylloidea) (Suetsugu 2020) and dung bee-
tles (Scarabaeoidea) (Milotić et al. 2019). Indeed, there are 
many examples where plants have co-evolved with inver-
tebrates to such an extent that plants develop specialised 
structures that enable dispersal by specific taxa (e.g., the 
elaiosomes on seeds of Acacia spp. that enable dispersal by 
ants). Yet, such ant-seed dispersal relationships can be dis-
rupted in urban areas, as evidenced by elevated rates of seed 
dispersal after the restoration of ant communities via urban 
forest restoration efforts in Sydney, Australia (Lomov et al. 
2009). Additionally, invertebrates assist with the movement 
of fungal spores, bacteria and other microorganisms through 
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intentional (e.g., transporting fruiting bodies of fungi) or 
incidental means (e.g., through digestion and excretion 
or via surface adhesion) (Bray and Wickings 2019). For 
instance, some beetles act as transport for fungi, moving and 
injecting significant quantities and diversity of spores into 
dead wood and thus improving decomposition and acceler-
ating the creation of hollows that provide habitat for other 
organisms (Seibold et al. 2019). The movement and foraging 
of invertebrate taxa such as earthworms (Grant 1983; Milcu 
et al. 2006), ants (Beattie and Culver 1982; Christian and 
Stanton 2004; Rowles and O’Dowd 2009) and dung beetles 
(deCastro-Arrazola et al. 2020) not only facilitate seed dis-
persal (and fungal dispersal, see next section) but may be 
important mediators of germination success and seedling 
recruitment by protecting seeds from predation and locating 
seeds in nutrient-rich microsites. Although seed dispersal in 
urban areas can be a significant driver of urban plant com-
munity composition, this interaction remains poorly under-
stood (Cheptou et al. 2008; Johnson et al. 2018). Supporting 
urban forest invertebrate communities that provide seed and 
microorganism dispersal could be critical for the species and 
genetic diversity of urban organisms.

Organic matter decomposition and soil 
development

The decomposition of organic matter closes the nutrient cycle 
loop in urban forests by reducing the accumulation of dead 
material and returning nutrients back to the soil to become 
available to plants once again. There are many soil- and litter-
dwelling invertebrates who perform these important func-
tions. Macro-detritivores (e.g., earthworms, woodlice and 
millipedes) break down leaf litter into smaller pieces (com-
minution) making it accessible to micro-detritivores (e.g., 
springtails, oribatid mites) and bacteria and fungi (David 
and Handa 2010; Ossola et al. 2017). Estimates across vari-
ous biomes and ecosystems (not including urban forests) 
show that the presence of complex decomposer communi-
ties, including macro-detritivores and their predators, can 
accelerate both carbon and nitrogen loss on average by 11% 
(Handa et al. 2014). Studies in urban habitats remain scarce 
and are much needed, but recent studies have confirmed the 
importance of soil faunal community complexity for litter 
decomposition in both urban gardens (Tresch et al. 2019a) 
and urban forests (Meyer et al. 2020).

Some invertebrates burrow into the soil but feed on the 
forest floor (e.g., anecic earthworms), which allows for 
the incorporation of organic detritus and nutrients from 
the surface deep into the soil profile, while promoting soil 
gas exchange and water infiltration (Ossola et al. 2015a). 
In fire-prone urban ecosystems, the removal of large quan-
tities of plant litter from forests by detritivorous inverte-
brates can decrease fuel loads and fire risk for neighbouring 

communities (Buckingham et al. 2015). An increase in detri-
tivore species richness significantly enhances the process of 
decomposition in urban greenspaces and urban forests, as 
shown in urban gardens in Switzerland (Tresch et al. 2019a, 
b) and in urban forests in Melbourne, Australia (Ossola 
et al. 2016), despite the latter being dominated by exotic 
species from Europe. The dominance of exotic detritivore 
species, however, is not uncommon and numerous species 
are now ubiquitous in cities worldwide due to trade and the 
movement of soil and plant material (Tóth et al. 2020). For 
example, historic anthropogenic disturbance, over a century 
old, best explained the intensity of exotic earthworm inva-
sion in a north-eastern North American peri-urban forest 
(Beauséjour et al. 2014). Exotic detritivorous earthworms in 
North American forests change plant species composition by 
favouring non-native plants and reducing the cover of native 
species (Craven et al. 2017) and by reducing the diversity 
and density of soil invertebrates (Ferlian et al. 2017).

Decomposing dead wood, including snags/stags (standing 
dead trees), old roots and fallen branches, is another impor-
tant forest resource (e.g., Thorn et al. 2020), but not always 
assessed in urban forest management (Korhonen et al. 2020). 
Wood decomposition is a long process occurring in different 
parts of a tree and at different stages of its life, thus providing 
nursery and refuge resources (i.e., a habitat tree, see Bauerle 
and Nothdurft 2011) to many taxa and from different trophic 
levels. For example, dead wood can provide important habitat 
to springtail (Collembola) communities (Raymond-Leonard 
et al. 2020). Habitat trees and tree related microhabitats 
are also particularly important to saproxylic invertebrates, 
especially jewel beetles (Buprestidae), long-horned beetles 
(Cerambycidae) and bark beetles (Scolytinae) (Speight 1989; 
Grove 2002; Kraus et al. 2016) whose larval stage can last 
up to five years. A specific example is the European stag 
beetle (Lucanus cervus), which often occurs in warm urban 
deciduous forests (Harvey et al. 2011). Saproxylic beetles are 
key actors in ecosystem processes such as wood decomposi-
tion and nutrient cycling (Dajoz 2000), and their richness, 
community composition and genetic diversity depend mainly 
on tree species identity, decay stage, wood size and volume 
(Schiegg 2000; Brin et al. 2011) and distribution (Horák 
2011, 2018), as well as on the connectivity and management 
regime of old trees and woody debris (Vandekerkhove et al. 
2013). Old trees and woody debris are a critical resource for 
this group of invertebrates, however these elements are often 
missing from urban forests due to public safety concerns and 
aesthetical preferences (Hauru et al. 2014; Le Roux et al. 
2014), threatening the persistence of these animals and the 
functions they perform.

Many saproxylic invertebrates feed on nectar and pollen 
as adults, thus the distribution and configuration of floral 
feeding resources (meadows, flowering bushes and trees) 
outside urban forests are complementary (e.g., Colding 
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2007) to maintain viable populations within urban forests 
(Matteson and Langellotto 2010). Since saproxylic inverte-
brates are generally not highly mobile, such floral resources 
should be in close proximity to decaying wood in urban for-
ests, or should be well connected through green corridors 
providing feeding resources and resting places (see also the 
“Pollination” section).

Disservices

While biodiversity and nature offer many benefits to people, 
they can also give rise to negative interactions or conse-
quences that can be considered “disservices”. Some exam-
ples include property damage by termites or other wood bor-
ing insects (e.g., Xylocopa), entomophobia (fear of insects) 
and major outbreaks of pests, both medical and economic. 
One of the disservices with the most direct consequences 
for humans occurs when invertebrates transmit diseases 
that pose a significant risk to public health (Lyytimäki et al. 
2008). Arthropod-borne diseases are of significant concern 
in urban landscapes (LaDeau et al. 2015), with key groups 
being mosquitoes (Culicidae) (Lourenço-de-Oliviera et al. 
2004; Rochlin et al. 2016; Murdock et al. 2017; Goodman 
et al. 2018) and ticks (Acari) (Maupin et al. 1991; Stafford 
and Magnarelli 1993; Frank et al. 1998; Uspensky 2017). 
The latter rely on vertebrate hosts also being present in for-
ests; therefore, understanding how the interactions between 
host, tick, and pathogen are affected by characteristics of the 
urban environment is essential for reducing public health 
risk (Ostfeld and Keesing 2017). For example, Krystosik 
et al. (2020) conducted a systematic review and found that 
solid waste associated with urban landscapes provided a 
breeding ground for zoonotic disease hosts (often mammals) 
and invertebrate transmission vectors. Given the potential of 
public health risks to shape perceptions and management of 
urban forests, it is vital that risks be assessed and compared 
against the benefits that these forests provide to nature and 
humans alike.

Filters acting on urban forest invertebrates

To understand community assembly of urban forest inver-
tebrates and associated ecosystem functions, we must con-
sider how the urban environment acts as an ecological fil-
ter of invertebrate traits (Brousseau et al. 2018; Fournier 
et al. 2020). Filters determining urban pools of species 
act at different temporal and spatial scales. They include 
both biophysical and biogeographical constraints, as well 
as broad-scale human factors such as human-mediated spe-
cies dispersal at a global scale (Swan et al. 2011; Aronson 
et al. 2016). Beyond such regional considerations, once a 
species arrives, they must initially survive the local urban 

environment to become established. Survival will depend 
on traits that influence morphology, phenology, physiol-
ogy and behaviour, enabling individuals to overcome the 
range of dispersal, abiotic and biotic filters at play in urban 
landscapes (Brousseau et al. 2018). These include urban 
landscape configuration, development history and human 
activity and decision-making, as well as interactions among 
multiple species (Aronson et al. 2016). For example, inver-
tebrates in urban forests face abiotic filters such as higher 
temperatures resulting from heat islands (Arnfield 2003; but 
see Ziter et al. 2019) or pollutants such as noise, light or 
chemicals (Halfwerk and Slabbekoorn 2015) compared to 
non-urban forests.

At the bottom strata, soil-dwelling invertebrates in cities 
are confronted with a soil matrix of diverse origins that may 
include rubble or other non-native parent material (Pickett 
et al. 2011). These soils may also exhibit alkaline condi-
tions associated with cement, may be compacted and sealed 
under impervious surfaces, have contaminants such as salt 
and heavy metals and be subject to major disruptions such as 
litter removal (Pickett et al. 2011; Szlavecz et al. 2018). Such 
soils are associated with changes in the abundance and com-
position of belowground invertebrate communities (Santorufo 
et al. 2012) and the composition of aboveground communities 
(e.g. Do et al. 2014). Altered soil conditions may also lead to 
invertebrate communities with particular traits that enable sur-
vival. For example, in a study of Collembola under urban trees 
in Italy, species most tolerant to filters such as low organic 
matter and high heavy metal concentrations were smaller, 
pigmented, sexually reproducing and had a well-developed 
jumping apparatus (Santorufo et al. 2014).

Biotic filters may have equally important, if not greater 
effects on invertebrate communities (see Kraft et al. 2015). 
The high proportion of non-native plant species in urban 
areas results in novel resources available to urban forest 
invertebrates and may influence trophic and non-trophic 
interactions in these ecosystems (Valentine et al. 2020). For 
instance, non-native trees as sources of organic matter for 
invertebrates have the potential to influence the community 
assembly of collembolans (Raymond-Leonard et al. 2018) 
and mites (Malloch et al. 2020), and ultimately, litter decom-
position rates (Makkonen et al. 2012; but see Finerty et al. 
2016).

Cities are thus home to novel community assemblages, 
including non-native organisms introduced by humans. 
Indeed, urban areas can be entry points for invasions, for 
instance for carabid beetles (Spence and Spence 1988) and 
earthworms (Hendrix et al. 2008). Introduced plants may 
be intentionally selected for the purposes of urban plan-
ning, landscaping or other cultural activities by which they 
provide ecosystem services or disservices; but plant and 
invertebrate species may also arrive in cities unintention-
ally (Padayachee et al. 2017). For example, the harlequin 

1594 Urban Ecosystems (2022) 25:1589–1609



1 3

ladybird (Harmonia axyridis) was introduced outside of its  
native range as a biological control agent, but has now 
spread to urban areas over several continents (Brown et al. 
2011). The following paragraphs explore in further detail 
how various filters may shape invertebrate communities and 
their associated ecosystem functions.

Changes in habitat structure and vegetation 
simplification

Invertebrates inhabiting urban forests can be highly sensi-
tive to changes in habitat structure and composition. For 
instance, leaf litter and wood detritus are both habitat and 
trophic resources for detritivores and saproxylic organisms, 
respectively. As such, the removal of leaf litter and dead 
wood from urban forests can obliterate communities of these 
specialised invertebrates (Siitonen 2001; Vandekerkhove 
et al. 2013; Ossola et al. 2016). In highly frequented forests, 
soil trampling by humans can cause the reduction of bur-
rows and suitable microhabitats on the forest floor, which 
negatively affects the cover of understorey forest vegetation 
(Hamberg et al. 2008). This alters carabid beetle assem-
blages compared to less trampled areas, yet the responses 
of individual species may vary, as many forest specialist spe-
cies have already been lost from urban forests (Kotze et al. 
2012). Similarly, when soil becomes compacted or sealed 
with impervious surfaces, this limits nesting resources for 
burrowing organisms.

Vegetation structure simplification can lead to a more sim-
plified invertebrate community (Threlfall et al. 2017; Mata 
et al. 2021). Often, changes in vegetation structure occur as a 
result of development, management (e.g., mowing), or through 
invasive species proliferation in city parks (Kühn and Klotz 
2006; Cadotte et al. 2017). The latter has been shown to result 
in a decline in soil micro-invertebrate richness and abundance 
along an urbanization gradient in Toronto, Canada (Malloch 
et al. 2020). However, the invasion of urban forests by exotic 
tree species can accelerate species turnover without decreas-
ing invertebrate richness or abundance (Buchholz et al. 2015). 
Taxa most affected by the simplification of vegetation structure 
are phytophagous insects dependent on host plants; for exam-
ple, butterfly caterpillars feeding on leaves, or bees feeding on 
pollen and nectar (Bernays and Chapman 1994). Particularly 
vulnerable are those species that form obligate associations 
and mutualistic relationships with plants or other invertebrates. 
For instance, in some urban forests in eastern Australia, the 
larvae of the imperial hairstreak butterfly (Jalmenus evagoras) 
feed on a limited set of tree species within the genus Acacia 
and form a mutualistic relationship with a few ant species of 
the genus Iridomyrmex that receive nutrient-rich secretions 
from the larvae in exchange for the protection they provide.

Urban forests often have a history of management that 
includes the planting of trees that resist urban pollutants 

and other anthropogenic stressors (Roy et al. 2012). Urban 
afforestation efforts are typically accompanied by the man-
agement of herbaceous, often invasive, plants, including 
by mowing, herbicide application and physical removal 
(Oldfield et al. 2013). Management interventions such as 
these, or their absence, influence the type and number of 
invertebrates in urban forests, which have both positive 
and negative impacts on the particular ecosystem services 
invertebrates provide. For example, some ant and butterfly 
species that are adapted to sparse and more open forests 
might be impacted by changes in plant communities that 
occur through plant succession, shrub encroachment or plant 
invasion (Ossola et al. 2015b). On the other hand, excessive 
mowing drastically reduces the number of flowers, reduc-
ing invertebrate diversity (Watson et al. 2020), while mown 
parks and urban grasslands result in lower invertebrate abun-
dance compared to un-mown vegetation (Garbuzov et al. 
2015; Norton et al. 2019).

Microclimatic changes

Changes in urban habitat structure can affect microclimatic 
conditions, and thus invertebrate diversity and ecological 
processes (Ossola et al. 2016). Microclimates available to 
urban forest invertebrates are influenced by landscape-level 
changes (e.g., temperature and windflow; Arnfield 2003) as 
well as the structure and composition of the forest itself. The 
interior areas of larger forests are buffered against higher 
temperatures and drier conditions (and edge effects in gen-
eral) in the surrounding built-up environment (Chang et al. 
2007; Chow et al. 2011) and potentially serve as a refuge 
for edge-sensitive species. However, edge environments and 
their associated increases in solar radiation, wind and lower 
moisture levels are common given the very fragmented 
nature of urban greenspaces. Habitats close to urban forest 
edges typically support different communities compared to 
areas away from edges (Kotze et al. 2012). The extent to 
which the composition and richness of invertebrate com-
munities change is related to the contrast of the forest edge 
compared to built infrastructure or non-forest vegetation 
(Noreika and Kotze 2012; Soga et al. 2013; Davis and Gagné 
2018). The interior areas of urban forests are also subject 
to disturbance, such as trampling, that can lead to dramatic 
changes in habitat structure and microclimatic conditions 
similar to those at edges. Notably, forest paths have very 
different conditions from adjacent vegetation, with trails and 
roadways leading to more open vegetation cover (Lehvävirta 
et al. 2006) that create movement corridors (or ‘flyways’) 
for some aerial insects (e.g., Papilio butterflies; Esaki 1949) 
and compressed leaf litter and soils (Duffey 1975) that can 
reduce abundances of carabid beetles adapted to more humid 
conditions (Lehvävirta et al. 2006; Kotze et al. 2012).
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Forest management can also have important effects on 
microclimate. Many urban tree stands, e.g., along roadsides 
or in parks with mown lawns, are actively managed to avoid 
an understory from developing (Jorgensen et al. 2002) lead-
ing to very dry and sun-exposed conditions similar to those 
in grasslands, and subsequent changes in species compo-
sition (Norton 2011). Urban forest management can also 
have the opposite effect. For instance, the suppression of 
fire in built-up areas (Kareiva et al. 2007) and a reduction in 
historical coppicing (Rackham 2008) that result in a more 
closed canopy, change the composition of spider communi-
ties where species that are dependent on open vegetation 
decline in number (Košulič et al. 2016). Additionally, the 
loss of dead wood, leaf litter and tree hollows in urban for-
ests, particularly those managed for public amenity, reduces 
microclimates available to invertebrates. These are habitats 
that provide moist and cooler refuge from higher tempera-
tures (Scheffers et al. 2014) and their loss in urban environ-
ments might be detrimental to taxa that depend on these 
conditions (Sebek et al. 2013).

Pollution

Anthropogenic sensory pollution mainly comes in three forms: 
acoustic noise, artificial light and chemical substances (Halfwerk 
and Slabbekoorn 2015), all of which may have varied effects on 
organisms and communities, including the exclusion of mala-
dapted traits, the alteration of acoustic and visual communica-
tion or an increase in fitness through adaptation (Swaddle et al. 
2015; Henneken and Jones 2017). The effects of light pollution 
on invertebrates are the most obvious, ranging from a few insects 
circling a light in the home, to hundreds stuck in the grille or 
windshield of an automobile and even thousands or more at 
street lamps, e.g., during termite nuptial flights. However, while 
light pollution attracts some insects, it also repels other more 
photophobic species (see examples in Firebaugh and Haynes 
2019). Larger urban forest patches may buffer against the effects 
of light pollution, but this becomes compromised as fragmenta-
tion creates ever smaller forest patches in urban environments 
(Villarroya-Villalba et al. 2021). Consequently, photophobic 
invertebrates may become locally extinct, while those attracted 
to light may disperse to a suboptimal environment where they 
are exposed to elevated predation, physical harm (automobile 
collisions) and unfavourable habitat conditions.

Artificial light can also have behavioural effects on inverte-
brates that use light for communication, like fireflies (Lampy-
ridae). Fireflies inhabit ecologically diverse habitats, from 
wetlands, grasslands, forests to urban parks, but have lost 
much of this habitat due to urbanisation (Lewis et al. 2020). 
Owens et al. (2018) showed that male Aquatica ficta fireflies 
emit brighter signals with decreased frequency when exposed 
to artificial light at wavelengths below 533 nm, demonstrating 
light signal plasticity in these fireflies. Firebaugh and Haynes 

(2019) showed that fireflies lured to artificial light were less 
likely to engage in courtship dialogues, arguing that these 
light-polluted areas act as demographic traps. Recent evidence 
on moths also suggests that artificial light has the potential to 
disrupt chemical communication resulting in reduced mat-
ing opportunities (van Geffen et al. 2015a). The increasing 
global presence of artificial light at night is linked to shifts and 
declines in invertebrate diversity (Knop et al. 2017; Grubisic 
et al. 2018) and related ecosystem processes (e.g., pollina-
tion), which may spill over into diurnal insect communities 
active during the day (Knop et al. 2017).

Little is known about the effects of anthropogenic noise on 
invertebrates, and even less so in urban forests. In their review, 
Morley et al. (2014) identified two studies on invertebrates 
and noise that found: 1) positive correlations between noise 
levels and both call frequency and chorusing in the cicada 
Cryptotympana takasagona in urban parks, and 2) a greater 
low-frequency component in the songs of male grasshop-
pers (Chorthippus biguttulus) from noisy roadsides compared  
to paired quiet areas. In addition, a study by Davis et al. (2018) 
showed that monarch butterfly (Danaus plexippus) larvae 
exposed to roadside noise for two hours experienced a signifi-
cant increase in heart rate, which was interpreted as a stress 
response. Yet, longer exposure to continuous traffic noise did 
not elevate heart rates at the end of larval development, sug-
gesting desensitisation. Anthropogenic noise (here compres-
sor noise at a natural gas field in New Mexico, USA) has 
been shown to decrease the abundances of various arthropod 
taxa collected with pitfall traps (velvet ants and wolf spiders), 
while some taxa showed no effect and leafhoppers increased 
(Bunkley et al. 2017).

Chemical disturbances in urban landscapes arise from 
both indirect sources (e.g., microplastics and heavy metals) 
and deliberate applications (e.g., pesticides). The effects of 
active ingredients in some pesticides (e.g., neonicotinoids) 
have been well documented (Chagnon et al. 2015; van der 
Sluijs et al. 2015) and led to their ban in areas such as the 
European Union. In an urban forest context, chemical con-
tamination is likely to be present either as a legacy from past 
land-uses (e.g., asbestos or heavy metals), current practices 
(e.g., the direct spraying of or unintentional drift from pesti-
cides, as well as industrial and vehicular emissions), or from 
novel sources such as microplastics and nanoparticles. While 
the effects of these first two sources on invertebrates have 
been relatively well studied (Eggleton 2020), the impacts 
of novel sources of chemical pollution (e.g., per- and poly-
fluoroalkyl substances, PFAS) are still largely unknown. Yet 
regardless of the source, the overwhelming picture is that 
the presence of chemical contaminants has played a major 
role in contributing to the massive declines in insect abun-
dance and diversity over the past 20 years (Forister et al. 
2019), and even in interfering with the cognitive ability, i.e., 
learning and memory of honeybees that may have significant 
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consequences for the vital ecosystem service of pollination 
(Leonard et al. 2019).

Invertebrate responses to urban 
environments

In the following section, we look at some of the consequences 
of the filters discussed above for urban forest invertebrates.

Persistence vs. local extinction

Habitat destruction, reduction, fragmentation and transfor-
mation act synergistically with urbanisation-derived threats 
(New 2009; Kotze et al. 2011), such as the heat island and 
wind tunnel effects and light, noise and chemical pollution 
(New 2015). Indeed, many studies have shown the nega-
tive relationship between urbanisation and invertebrate spe-
cies richness (McKinney 2008; Faeth et al. 2011; Mata 
et al. 2014; Fenoglio et al. 2020; Piano et al. 2020) and trait 
composition change (Merckx et al. 2018; Fournier et al. 
2020). While these studies explored response patterns at 
the community level, recent studies are increasingly high-
lighting that the response of invertebrates to urbanisation 
processes and filters are species- and trait-specific – that is, 
some species and trait values tend to be absent in extreme 
environmental conditions, whereas others are present across 
a wider environmental gradient (Magura et al. 2013; Mata 
et al. 2014, 2017; Threlfall et al. 2017). Species-specific 
mechanisms driving the responses of invertebrates to urban 
filters are poorly understood. Specialist species interact with 
a narrow subset of mutualistic and prey species, and may be 
acutely susceptible to local extinctions (Dunn 2005; Kotze 
et al. 2011). For example, specialist insect herbivores, such 
as the weevil Cydmaea dorsalis, the leafhopper Pogonella 
bispinus, the lacebug Radinacantha tasmanica and the plant 
louse Acizzia keithi that depend on specific plant species are 
unlikely to persist if one or more urban filters result in the 
local extirpation of their host plant (Moir et al. 2011).

Adaptation and rapid evolution

The urban filters discussed above have the capacity to drive 
evolutionary as well as phenotypic change in urban-dwelling 
populations (Johnson and Munshi-South 2017; Alberti 2015; 
Alberti et al. 2017a, b; Hopkins et al. 2018). To date, the 
majority of studies assessing adaptation to urban environ-
ments are vertebrate and plant focussed (e.g., Kark et al. 
2007; McDonnell and Hahs 2015), with little research on 
invertebrates in urban forests. However, increasing evidence 
indicates that invertebrates may show comparable biologi-
cal responses along an urban–rural cline (Altermatt and 
Ebert 2016; Kotze et al. 2011; Eggenberger et al. 2019). For 

instance, arthropods in urban environments exhibit increased 
intraspecific variation in morphology (Weller and Ganzhorn 
2004; Magura et al. 2006; Lowe et al. 2014; Eggenberger 
et al. 2019), key life history traits (Miyashita 1990; Lowe 
et al. 2016) and behaviour (Kralj-Fišer and Schneider 2012) 
compared to their rural counterparts. In addition, chemical 
analyses reveal the presence of human food in the diet of 
urban ants (Penick et al. 2015).

More recently, the focus has been on exploring the impact 
of specific anthropogenic stressors on physiological tolerance 
and behaviour within urban environments, but findings linked 
to urban forests are scarce. Such studies reveal an increased tol-
erance for heat in urban ants (Angilletta et al. 2007; Diamond 
et al. 2018) and carabid beetles (Piano et al. 2017), and higher 
frequencies in the courtship signals of grasshoppers inhabiting 
roadside verges (Lampe et al. 2012). Light at night disrupts 
physiological processes and biological timing (Hopkins et al. 
2018), as well as ecosystem functions, such as pollination, car-
ried out by nocturnal and diurnal communities (Knop et al. 
2017). Experimental laboratory studies reveal dramatic eco-
logical variation in invertebrates linked directly to the presence 
of light at night (Durrant et al. 2018; Willmott et al. 2018; van 
Geffen et al. 2015a, b; van Geffen et al. 2014). The impact of 
light at night is species-specific and the observed patterns may 
not reveal the true nature of the ecological trade-offs faced. For 
example, in spiders, the presence of artificial light at night may 
disrupt biological timing, affecting growth and development 
under a resource-controlled laboratory environment (Willmott 
et al. 2018), but this may be offset by increased nocturnal prey 
capture rates, as measured in natural environments (Lowe et al. 
2014, 2016; Willmott et al. 2019).

Although there are examples of invertebrates that have 
undergone contemporary evolution to adapt to human activ-
ity, there are few documented examples of invertebrate evolu-
tion being a direct effect of landscape change (Johnson and 
Munshi-South 2017). Van’t Hof et al. (2016) demonstrated that 
industrial pollution accumulating on urban trees in nineteenth 
century Britain led to greater predation on light-coloured 
peppered moths (Biston betularia), and so populations under-
went mutation for greater melanism. In another study, Jha 
(2015) showed that gene flow in a bumblebee species (Bom-
bus vosnesenskii) was inhibited by impervious surfaces that 
replaced natural areas. Reduced flight-to-light behaviour of 
individuals of the small ermine moth (Yponomeuta cagnagella) 
from urban (artificial light at night) compared to rural (natu-
ral light at night) regions suggests adaptation (Altermatt and 
Ebert 2016). However, there is limited understanding of how 
fragmentation via the alteration or removal of urban forests 
and other greenspaces restricts gene flow and genetic variabil-
ity in invertebrate species, and whether affected populations 
are more susceptible to future urbanisation and global change 
(Santangelo et al. 2018). Novel habitats generated as a result of 
urbanisation may also increase gene flow for some ubiquitous 

1597Urban Ecosystems (2022) 25:1589–1609



1 3

urban species and pests (Miles et al. 2018), including those 
that exploit and further damage urban forests. In general, more 
work is needed to understand how landscape changes in urban 
areas impact the evolution of urban invertebrates (Miles et al. 
2019), both to mitigate evolutionary resistance in pests and 
foster gene flow within native species populations.

Acknowledging the complexity of responses

There are some general patterns and trends in the responses of 
urban forest invertebrates to increasing urbanisation that are 
consistently observed across the diversity of taxa and species. 
However, there is also an equally diverse array of complex 
responses that are highly influenced by local context and the 
specific components of a particular system (see Fournier et al. 
2020). For example, at the local scale, insectivorous birds, as 
well as invertebrate predators, parasites and pathogenic fungi, 
play an important top-down role in regulating insect numbers 
in urban tree canopies. Within remnant forests in Sydney, Aus-
tralia, where small insectivorous birds have been lost from the 
urban environment, herbivorous insects have been released 
from predation resulting in higher levels of herbivory (Hochuli 
et al. 2004). In contrast, recent work from multiple cities in 
Eastern Europe has found that insectivorous birds are more 
likely to move into cities, resulting in declines in the density 
of insects and reduced levels of herbivory (Kozlov et al. 2017). 
As such, in some cities, urban forests in highly urbanised set-
tings may show enhanced defoliation, whereas in others the 
impacts of herbivorous insects are diminished through antag-
onistic trophic interactions. However, changes in bottom-up 
interactions may be equally at play. Around the world, urban 
forests are overwhelmingly dominated by very few species 
(Paquette et al. 2021). Such a simplification of leaf litter traits 
may lead to a simplification of associated invertebrate con-
sumers. Recent studies in natural forests or plantations have 
shown a consistent covariation of leaf litter traits and detriti-
vore feeding traits ranging from mesofauna such as springtails 
(Raymond-Leonard et al. 2019) to detritivorous macrofauna 
such as millipedes and isopods (Brousseau et al. 2019).

The diversity of invertebrates themselves, and their complex 
life cycles that include reliance on multiple terrestrial and aquatic 
habitat types, also mean that it is challenging to identify a com-
mon framework that applies across all cities and contexts, and 
as such, idiosyncratic responses to urbanisation are likely to be 
common.

Managing urban forests for invertebrates

Based on what we have learned from the responses of inver-
tebrates to the urban environment in general, here we make 
a series of recommendations aimed at maintaining and 

enhancing invertebrates in urban forests. We believe that 
the evidence of impacts in urban environments, even if not 
specific to forests, is sufficient to formulate measures to 
mitigate the impacts described above. We recommend that 
the protection and promotion of urban forest invertebrate 
diversity be a two-pronged approach that seeks to 1) enhance 
resources for invertebrates, whilst 2) reducing exposure to 
urban threats (Fig. 1).

Enhancing resources for invertebrates requires actions 
such as:

• Maintaining leaf litter cover and dead and decaying wood 
to promote a speciose detritivore and saproxylic commu-
nity (Siitonen 2001; Ossola et al. 2016). Dead wood is 
a limiting resource in urban environments (Harper et al. 
2005; Sebek et al. 2013; Le Roux et al. 2014; Korhonen 
et al. 2020) but an important refuge from, for instance, 
increased temperatures (Scheffers et al. 2014). These 
resources can be reintroduced by actively adding piles 
of dead wood of different species, sizes and decay stages 
(Gaston et al. 2005) and in certain configurations to show 
intent (the ‘cues to care’ concept by Nassauer 1995; Li 
and Nassauer 2020) together with information posts to 
explain the benefits of dead wood, changing management 
to support natural regeneration of dead wood features 
(Sebek et al. 2013), or introducing artificial structures 
that mimic these features (Goldingay and Stevens 2009). 
However, it should be noted that the latter strategy is lim-
ited in its benefit as it does not provide feeding resources 
for target taxa.

• Maintain areas of exposed soils and soils that have not 
been overly compacted or otherwise altered by human 
activities to provide habitat for invertebrates with a  
soil-dwelling (e.g., earthworms, ants or beetles) or  
soil-nesting (e.g., some bees and wasps) life stage. Addi-
tionally, limiting the sealing and compaction of soils  
by reducing human use to a small number of trails or 
areas will benefit ground beetles, ground-nesting bees, 
and other epigeic and endogeic groups (Cane et al. 2006; 
Lehvävirta et al. 2006; Galli et al. 2015).

• Protect, restore and create water bodies, including natural 
and human-made permanent or semi-permanent stand-
ing or running sources of water, for invertebrates with 
aquatic life stages. These species can be further supported 
through the presence of vegetation and natural surfaces 
(e.g., sand or mud) and minimal macro, micro and chemi-
cal pollutants (Forister et al. 2019).

• Promote indigenous plant species (Mata et al. 2021), and 
undertake management practices that support them, to 
ensure that food resources are provided in a form that is 
accessible to co-evolved native invertebrates. For exam-
ple, open cup flowers are an essential resource if we wish 
to support short-tongued native bee species in south-
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eastern Australia’s urban forests (Threlfall et al. 2015), 
while the maintenance or establishment of a native forest 
understory layer will benefit the detritivore community, 
as well as provide habitat and resources for bees, beetles, 
and wasps among others (Ossola et al. 2016; Threlfall 
et al. 2017; Mata et al. 2021). Note that we are not advo-
cating for the exclusion of exotic, ornamental plant spe-
cies, which also provide important resources for many 

urban forest invertebrates, but do promote native plant 
species that are important for co-evolved invertebrate-
plant relationships.

• Provide resources for all life stages to support a complex 
assemblage of invertebrates (see Hauck and Weisser 2015) 
that require a diversity of habitat types (e.g., dragonflies 
depend on aquatic and terrestrial habitats to complete their 
life cycle and aerial moths develop from soil-dwelling 

Fig. 1  Actions to promote the presence and diversity of invertebrates 
in urban forests. Invertebrate communities are enhanced by maintain-
ing or increasing habitat complexity through the addition of dead and 
decaying wood, providing areas of exposed soil and clean water bod-
ies, promoting native and indigenous plant species across all strata of 
the forest and ensuring resources for all life stages. At the same time, 

actions that reduce deleterious effects of the city include mitigating 
the urban heat island effect, reducing light, air, water and soil pollu-
tion, and managing overabundant, often pest, species. By involving 
the public in these actions, people are empowered to be stewards of 
urban forests and the invertebrates they contain

1599Urban Ecosystems (2022) 25:1589–1609



1 3

larvae) and food sources (e.g., herbivorous caterpillars 
or xylophagous beetle larvae become nectar-feeding but-
terflies and beetles, respectively). It is also important to 
consider that threats and degrading processes may change 
as organisms proceed through their life cycle, and to man-
age habitat accordingly. Furthermore, the length of differ-
ent life stages should be considered when managing dead 
wood ‒ saproxylic beetles such as the European stag beetle 
(Lucanus cervus) spend up to five years in decaying roots.

• Maintain or increase vegetation structural complexity to 
provide a wide range of food, shelter and other resources 
that support the invertebrates that feed directly on plant 
leaves, nectar, flowers, seeds and fruits, and the predatory 
invertebrates that feed on them. For public managers, the 
benefits of increasing vegetation structural complexity in 
urban forests may be public preference for the resulting 
naturalistic character this creates (Heyman 2012; Harris 
et al. 2018), although this may not be a universal phe-
nomenon. Public support for increasing the complexity 
of an urban forest may be enhanced by co-management 
programmes that engage with stakeholders to collabo-
ratively achieve common management goals (Tsuchiya 
et al. 2013), as illustrated by the co-management approach 
to woodlands in the neighbourhood of Sletten, Denmark 
(Fors et al. 2018).

While the previous recommendations highlight the posi-
tive actions than can enhance urban forests for invertebrates, 
the following mitigation actions will additionally benefit 
them by reducing the impact of broader threats and distur-
bances (Fig. 1). These actions include:

• Reduce chemical pollutants by reducing inputs at the 
source, and by prioritising non-chemical control of pests 
(e.g., biological control (Kenis et al. 2017)) through Inte-
grated Pest Management.

• Reduce the urban heat island effect and detrimental dis-
turbances through landscape-scale planning, site-scale  
design, and appropriate management practices. For exam-
ple, large greenspaces provide cooling benefits and offer a 
refuge where invertebrates can reduce their exposure to the 
urban heat island effect (Ziter et al. 2019). Site and land-
scape design can also provide local refuges where inverte-
brates can shelter during disturbances, as can management 
practices such as creating mosaics of different age stands.

• Reduce light pollution by: (i) maintaining unlit areas; (ii) 
reducing the duration of lighting; (iii) minimising the 
‘trespass’ of light through improved design; (iv) changing  
the intensity of lighting; (v) adjusting the spectral com-
position of lighting (Gaston et al. 2012); and (vi) use new 
technology and lighting systems (Goddard et al. 2021). 
While night lighting is an important amenity for people, 
including for their perceived safety, there is also strong 

evidence that the associated loss of darkness interrupts 
natural circadian rhythms with negative consequences for  
human physical and mental health (Cho et al. 2015).

• Reduce exposure to natural disasters such as catastrophic 
bushfires or destructive flooding by distributing areas of 
urban forest across the landscape, and providing areas where 
invertebrates can retreat to safety (or repopulate landscapes) 
such as upland areas in floodplains, or reducing the risk of 
catastrophic fire through cultural burning and Indigenous 
land management practices (McKemey et al. 2019).

• Manage overabundant invasive species and pests to help 
prevent completely disrupting urban forest ecosystems 
by altering invertebrate, vertebrate and plant commu-
nities and ecological processes, as has happened with 
extremely successful invaders, such as Argentine and yel-
low crazy ants (Linepithema humile, Anoplolepis gracili-
pes) (Silverman and Brightwell 2008). As urban areas are 
also often primary sites for biological invasions, monitor-
ing invertebrates can complement biosecurity efforts and 
allow a more rapid response to emerging pests (Hendrix 
et al. 2008). Supporting diverse invertebrate communities 
can help reduce the incidence and rate of invasions by 
providing a broader range of potential natural enemies 
(Jones and Leather 2012; Gaudon and Smith 2020).

• Empower humans to become stewards of ecosystems, 
through actions such as engaging citizens and other urban 
stakeholders in the sustainable management of pest species 
(Lowe et al. 2019) and the conservation of wild, forested 
land in cities. Creative ways to engage and empower people 
to uphold conservation could include public demonstra-
tions, art installations, guided walks, or education pro-
grammes. This, in turn, will help reduce the growing dis-
connect between people and nature, and generate stronger 
support for the other actions outlined in this section.

Research gaps and future research

While we know quite a lot about invertebrates in urban envi-
ronments, several gaps still remain in our knowledge of these 
organisms in urban forests. To effectively manage and con-
serve diverse communities of urban forest invertebrates, we 
need to build a stronger understanding of how they survive, 
persist and respond to densifying urban landscapes. For a 
broader perspective on a research agenda for urban biodi-
versity, see Knapp et al. (2021).

Some of the important questions for future research on 
invertebrates in urban forests, but also in urban environments 
in general, include:

 i. At what rate are forest invertebrate numbers, biomass 
and species declining and how strong is the evidence 
for a sliding baseline of invertebrate numbers based 
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on the experiences of the people who are doing the 
assessments? This requires long-term research on pop-
ulation sizes, biomass and species richness in multiple 
cities and biogeographic areas (Hallmann et al. 2017; 
Macgregor et al. 2019; Sánchez-Bayo and Wyckhuys 
2019), and an understanding of the pitfalls in these 
long-term studies (Didham et al. 2020).

 ii. What are the implications of current and future actions 
on forest invertebrates and the ability of urban areas to 
support them under climate extremes (e.g., intensified 
storm events, droughts and heatwaves) and intentional, 
e.g., the planting of street trees, and unintentional 
changes in vegetation (Ossola et al. 2020)?

 iii. How do forest invertebrates respond to different types 
of disturbance events (e.g., catastrophic wildfires ver-
sus Indigenous cultural burning practices) and what 
are the underlying mechanisms behind these responses 
(Erenler et al. 2020; Filazzola et al. 2021)?

 iv. What are the metapopulation and metacommunity 
structures and dynamics present in urban forest inver-
tebrate communities? What can highly fragmented, 
isolated and dynamic patches of forests in cities reveal 
with respect to theories on species and community 
occupancy (Turrini and Knop 2015)?

 v. What are the effects of city history and historical land-
scapes (legacy effects) on contemporary invertebrate com-
munities (e.g., Lindborg and Eriksson 2004; du Toit et al. 
2016 for plants; Ossola et al. 2021)? Furthermore, how 
do invertebrate communities change over time in differ-
ent urban spatial contexts and are priority effects, i.e., the 
impacts on a community based on the order or timing of 
species arrival (Fukami 2015), important in this process?

 vi. What are the pre-existing adaptations that enable 
invertebrates to persist in cities now and in the future, 
and what are the eco-evolutionary responses that are 
emerging in invertebrates in response to current and 
future urban filters and pressures (Alberti 2015)? 
What are the potential consequences of these changes 
on future urban forest invertebrate assemblages and 
their ability to deliver critical ecosystem services?

 vii. To what extent do cities act as a conservation refuge for 
endangered and vulnerable species that might struggle 
to survive in human-dominated peri-urban landscapes, 
such as those affected by intensive agriculture, forest 
logging, or desertification (Hall et al. 2017)?

Conclusion

Invertebrates play a key role in supporting healthy urban envi-
ronments for people, as reflected in their diverse and varied 
contributions to the functioning of urban forest ecosystems. 

While many environmental filters are similar in the urban 
milieu across the globe, individual responses to these filters 
are highly variable, reflecting the diversity and complexity of 
invertebrate ecology and life cycles. Given the current con-
cern of an acute loss of invertebrate biomass, abundance and 
diversity, the conservation of forests in urban environments, 
and the invertebrates that support key ecosystem processes 
and underlying services, is even more critical. Delivering 
healthier and more resilient urban systems into the future 
requires urgent action to enhance the role of invertebrates as 
ecosystem engineers of urban forests. This can be achieved by 
actively promoting access to essential urban forest resources 
for a broad variety of organisms, combined with management 
actions to reduce the negative impacts of urban environments, 
such as habitat loss and air, noise and light pollution. Our 
success in safeguarding ecosystem functions and processes 
in the face of an ever-densifying human population truly does 
rely on ‘the little things that run the world’.
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