32 research outputs found

    Coevolution of exploiter specialization and victim mimicry can be cyclic and saltational

    Get PDF
    Darwin’s Principle of Divergence explains sympatric speciation as gradual and directional. Contradicting evidence suggests that species’ traits evolve saltationally. Here, we model coevolution in exploiter-victim systems. Victims (resource population) have heritable, mutable cue phenotypes with different levels of defense. Exploiters have heritable, mutable perceptual phenotypes. Our simulations reveal coevolution of victim mimicry and exploiter specialization in a saltational and reversible cycle. Evolution is gradual and directional only in the specialization phase of the cycle thereby implying that specialization itself is saltational in such systems. Once linked to assortative mating, exploiter specialization provides conditions for speciation

    Selection against Accumulating Mutations in Niche-Preference Genes Can Drive Speciation

    Get PDF
    Our current understanding of sympatric speciation is that it occurs primarily through disruptive selection on ecological genes driven by competition, followed by reproductive isolation through reinforcement-like selection against inferior intermediates/heterozygotes. Our evolutionary model of selection on resource recognition and preference traits suggests a new mechanism for sympatric speciation. We find speciation can occur in three phases. First a polymorphism of functionally different phenotypes is established through evolution of specialization. On the gene level, regulatory functions have evolved in which some alleles are conditionally switched off (i.e. are silent). These alleles accumulate harmful mutations that potentially may be expressed in offspring through recombination. Second mating associated with resource preference invades because harmful mutations in parents are not expressed in the offspring when mating assortatively, thereby dividing the population into two pre-zygotically isolated resource-specialist lineages. Third, silent alleles that evolved in phase one now accumulate deleterious mutations over the following generations in a Bateson-Dobzhansky-Muller fashion, establishing a post-zygotic barrier to hybridization

    Short-term prediction and harvest control rules for Baltic cod (Gadus morhua): A generic method to include state of the art knowledge on environmental uncertainty and its consequences – would it make a difference for advice?

    Get PDF
    Vital processes relevant for exploited stocks, for example growth, predation and recruitment are closely related to the environmental conditions. Here, we present a generic method to include state of the art knowledge on environmental impacts and environmental forecasting into short-term predictions and the formulation of environment-based harvest control rules for exploited stocks. The method consists of three elements: First, the linkage between environmental parameters and stock dynamics, second the short-term prediction of both environment and stock dynamics, and third the scaling of otherwise constant reference values for fishing mortality in accordance with the environmental situation. The method is exemplified for Eastern Baltic cod. Recruitment is treated as dependent on oxygen conditions, and the formulation of the proposed fishing intensity is accounting for the actual oxygen conditions and predicted conditions for the year following the assessment year. Finally, the resulting advice is compared to advice that has been given not accounting for the oxygen conditions

    Artificial neural networks in models of specialization and sympatric speciation

    No full text
    This thesis deals with specialization and how it is linked to sympatric speciation. The trait driving specialization is a cue recognition trait modelled with artificial neural networks that exploiters use to discriminate beneficial resources from detrimental resources based on the signals of the resources. Paper I investigates how haploid exploiters and the resources coevolve when the signals of the resources can evolve through mutations. We find that this coevolution can be a cyclic process with saltational changes between different stages and that evolution is only directional and the exploiters are only specialists in parts of this cycle. In simulations underlying Paper II the signals of the resources can not mutate but the exploiters have a diploid genome and the organisms reproduce sexually. We show that the disruptive selection stemming from exploiters specializing on different resources can overcome the homogenizing effect of sexual recombination when exploiters mate randomly and produce a functional genetic polymorphism with specialized exploiters. A functional genetic polymorphism removes the force of reinforcement but we run simulations where the exploiters have a mating gene determining if mating is random or if exploiters should mate assortatively in Paper III. We find that assortative invades the exploiter population and homozygote specialists evolve because the genetic polymorphism pays a cost by having some alleles being silenced (that is they do not contribute to the complete phenotype) in certain genotypes so a mutation in these silenced alleles is not selected against, which cause these alleles to accumulate deleterious mutations. The homozygote specialists, mating assortatively, are much more efficiently removing deleterious mutations from the population and hence can invade the population. Finally, in Paper IV we investigate the effects of resource and resource signal arrangements in the environment. We show that the environment can influence the evolution of specialization and sympatric speciation. By modelling a resource discrimination trait based on the interaction of epistatic genes we find a novel force promoting sympatric speciation over genetic polymorphisms

    Winter weight loss of different subspecies of honey bee Apis mellifera colonies (Linnaeus, 1758) in southwestern Sweden

    No full text
    Honey bees are currently facing mounting pressures that have resulted in population declines in many parts of the world. In northern climates winter is a bottleneck for honey bees and a thorough understanding of the colonies’ ability to withstand the winter is needed in order to protect the bees from further decline. In this study the influence of weather variables on colony weight loss was studied over one winter (2019–2020) in two apiaries (32 colonies in total) in southwestern Sweden with weather stations recording wind and temperature at 5-min intervals. Three subspecies of honey bees and one hybrid were studied: the native Apis mellifera mellifera, the Italian A. m. ligustica, the Carniolan A. m. carnica and the hybrid Buckfast. Additionally, we recorded Varroa mite infestation. To analyze factors involved in resource consumption, three modelling approaches using weather and weight data were developed: the first links daily consumption rates with environmental variables, the second modelled the cumulative weight change over time, and the third estimated weight change over time taking light intensity and temperature into account. Weight losses were in general low (0.039 ± 0.013kg/day and colony) and comparable to southern locations, likely due to an exceptionally warm winter (average temperature 3.5°C). Weight losses differed only marginally between subspecies with indications that A. m. mellifera was having a more conservative resource consumption, but more studies are needed to confirm this. We did not find any effect of Varroa mite numbers on weight loss. Increased light intensity and temperature both triggered the resource consumption in honey bees. The temperature effect on resource consumption is in accordance with the metabolic theory of ecology. The consequences of these findings on honey bee survival under predicted climate changes, is still an open question that needs further analysis.CC BY [email protected]: October 14, 2021Funding: All authors were funded by the EU-financed INTERREG Sweden-Norway programme - European structural and Investments Funds in Sweden (2014-2020) (grant-nr. 20201923) with the Swedish title “BIstånd till nordiska bin – unik resurs för framtidens ekosystemtjänster” (http://www.interreg-sverige-norge.com/?portfolio=bistand-till-nordiska-bin-unik-resurs-for-framtidens-ekosystemtjanster), the funders did not play a role in the study design, data collection, analysis, publish decistion or preparation of the manuscript.BIstånd till nordiska bin – unik resurs för framtidens ekosystemtjänste

    Using Video Footage for Observing Honey Bee Behaviour at Hive Entrances

    No full text
    Video recording is a common method to study animal behaviour. In honey bee studies, short video-recordings are often used to learn more about a behaviour, but rarely used for their quantification. Standard methods for observing bee behaviour involve behavioural assays or direct observation of a limited subset of marked bees within an observation hive. This means that behaviour at the hive entrance may be overlooked. Here we describe a 4-camera set up for the study of behaviour at hive entrances. With minimal disturbance, we were able to record and quantify all previously described behaviours (9 in total - including self-grooming in drones) on and around the hive entrance. We briefly discuss the general feasibility of video footage and the relative frequency of each observed behaviour. Our conclusion is that video footage is a useful and perhaps overlooked method for unbiased quantification and comparisons of bee behaviour at the hive entrance. With this paper we are publishing some example short video-recordings as online supplementary material for educational purposes.CC BY-NC-ND 4.0Published online: 23 Aug 2022Email: [email protected] and Trädgårdsresan provided financial support for technical equipment and salary to EC. MN, SL and NN were funded by INTERREG Project number 2020-1923 'BIstånd till Nordiska bin'.</p

    Nash equilibrium can resolve conflicting maximum sustainable yields in multi-species fisheries management

    No full text
    The current fisheries management goals set by the European Commission states that fish stocks should be harvested to deliver maximum sustainable yields (MSY) and simultaneously, management should take ecosystem considerations into account. This creates unsolved trade-offs for the management of the stocks. We suggest a definition of a multi-species-MSY (MS-MSY) where no alternative fishing mortality (F) can increase yield (long term) for any ecologically interacting stock, given that the other stocks are fished at constant efforts (Fs). Such a MS-MSY can be solved through the game theoretic concept of a Nash equilibrium and here we explore two solutions to this conflict in the Baltic Sea. We maximize the sustainable yield of each stock under two constraints: first, we harvest the other stocks at a fixed F (FNE); second, we keep the spawning stock biomasses of the other stocks fixed [biomass Nash equilibrium (BNE)]. As a case study, we have developed a multi-species interaction stochastic operative model (MSI-SOM), which contains a SOM for each of the three dominant species of the Baltic Sea, the predator cod (Gadus morhua), and its prey herring (Clupea harengus), and sprat (Sprattus sprattus). For our Baltic Sea case, MS-MSYs exist under both the FNE and the BNE, but there is no guarantee that point solutions exists. We found that the prey species’ spawning stock biomasses are additive in the cod growth function, which allowed for a point solution in BNE. In the FNE, the herring MSY was found to be relatively insensitive to the other species’ fishing mortalities (F), which facilitated a point solution. The MSY targets of the BNE and the FNE differ slightly where the BNE gives higher predator yields and lower prey yields.CC BY 4.0</p
    corecore