2,638 research outputs found

    The Temporal and Spectral Characteristics of "Fast Rise and Exponential Decay" Gamma-Ray Burst Pulses

    Full text link
    In this paper we have analyzed the temporal and spectral behavior of 52 Fast Rise and Exponential Decay (FRED) pulses in 48 long-duration gamma-ray bursts (GRBs) observed by the CGRO/BATSE, using a pulse model with two shape parameters and the Band model with three shape parameters, respectively. It is found that these FRED pulses are distinguished both temporally and spectrally from those in long-lag pulses. Different from these long-lag pulses only one parameter pair indicates an evident correlation among the five parameters, which suggests that at least \sim4 parameters are needed to model burst temporal and spectral behavior. In addition, our studies reveal that these FRED pulses have correlated properties: (i) long-duration pulses have harder spectra and are less luminous than short-duration pulses; (ii) the more asymmetric the pulses are the steeper the evolutionary curves of the peak energy (EpE_{p}) in the νfν\nu f_{\nu} spectrum within pulse decay phase are. Our statistical results give some constrains on the current GRB models.Comment: 18 pages, 7 figures, accepted for publication in the Astrophysical Journa

    Health professionals' perceptions of cultural influences on stroke experiences and rehabilitation in Kuwait

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2012 Informa UK Ltd.Purpose: The aim of this study was to investigate the perceptions of health professionals who treat stroke patients in Kuwait regarding cultural influences on the experience of stroke and rehabilitation in Kuwait. Health professionals interviewed were from a variety of cultural backgrounds thus providing an opportunity to investigate how they perceived the influence of culture on stroke recovery and rehabilitation in Kuwait. Method: Semi-structured interviews were carried out with 12 health professionals with current/recent stroke rehabilitation experience in Kuwait, followed by thematic analysis of the verbatim transcripts. Results: The health professionals identified several features of the Kuwaiti culture that they believed affected the experiences of stroke patients. These were religious beliefs, family involvement, limited education and public information about stroke, prevailing negative attitudes toward stroke, access to finances for private treatment, social stigma and the public invisibility of disabled people, difficulties identifying meaningful goals for rehabilitation, and an acceptance of dependency linked with the widespread presence of maids and other paid assistants in most Kuwaiti homes. Conclusion: To offer culturally sensitive care, these issues should be taken into account during the rehabilitation of Kuwaiti stroke patients in their home country and elsewhere

    Spectral hardness evolution characteristics of tracking Gamma-ray Burst pulses

    Full text link
    Employing a sample presented by Kaneko et al. (2006) and Kocevski et al. (2003), we select 42 individual tracking pulses (here we defined tracking as the cases in which the hardness follows the same pattern as the flux or count rate time profile) within 36 Gamma-ray Bursts (GRBs) containing 527 time-resolved spectra and investigate the spectral hardness, EpeakE_{peak} (where EpeakE_{peak} is the maximum of the νFν\nu F_{\nu} spectrum), evolutionary characteristics. The evolution of these pulses follow soft-to-hard-to-soft (the phase of soft-to-hard and hard-to-soft are denoted by rise phase and decay phase, respectively) with time. It is found that the overall characteristics of EpeakE_{peak} of our selected sample are: 1) the EpeakE_{peak} evolution in the rise phase always start on the high state (the values of EpeakE_{peak} are always higher than 50 keV); 2) the spectra of rise phase clearly start at higher energy (the median of EpeakE_{peak} are about 300 keV), whereas the spectra of decay phase end at much lower energy (the median of EpeakE_{peak} are about 200 keV); 3) the spectra of rise phase are harder than that of the decay phase and the duration of rise phase are much shorter than that of decay phase as well. In other words, for a complete pulse the initial EpeakE_{peak} is higher than the final EpeakE_{peak} and the duration of initial phase (rise phase) are much shorter than the final phase (decay phase). This results are in good agreement with the predictions of Lu et al. (2007) and current popular view on the production of GRBs. We argue that the spectral evolution of tracking pulses may be relate to both of kinematic and dynamic process even if we currently can not provide further evidences to distinguish which one is dominant. Moreover, our statistical results give some witnesses to constrain the current GRB model.Comment: 32 pages, 26 figures, 3 tables, accepted for publication in New Astronom

    Resolve survey Photometry and volume-limited calibration of the Photometric gas fractions technique

    Get PDF
    We present custom-processed ultraviolet, optical, and near-infrared photometry for the REsolved Spectroscopy of a Local VolumE (RESOLVE) survey, a volume-limited census of stellar, gas, and dynamical mass within two subvolumes of the nearby universe (RESOLVE-A and RESOLVE-B). RESOLVE is complete down to baryonic mass 10 ~ 9.1 9.3 - M, probing the upper end of the dwarf galaxy regime. In contrast to standard pipeline photometry (e.g., SDSS), our photometry uses optimal background subtraction, avoids suppressing color gradients, and employs multiple flux extrapolation routines to estimate systematic errors. With these improvements, we measure brighter magnitudes, larger radii, bluer colors, and a real increase in scatter around the red sequence. Combining stellar mass estimates based on our optimized photometry with the nearly complete H I mass census for RESOLVE-A, we create new z = 0 volume-limited calibrations of the photometric gas fractions (PGF) technique, which predicts gas-to-stellar mass ratios (G/S) from galaxy colors and optional additional parameters. We analyze G/S-color residuals versus potential third parameters, finding that axial ratio is the best independent and physically meaningful third parameter. We define a “modified color” from planar fits to G/S as a function of both color and axial ratio. In the complete galaxy population, upper limits on G/S bias linear and planar fits. We therefore model the entire PGF probability density field, enabling iterative statistical modeling of upper limits and prediction of full G/S probability distributions for individual galaxies. These distributions have two-component structure in the red color regime. Finally, we use the RESOLVE-B 21 cm census to test several PGF calibrations, finding that most systematically under- or overestimate gas masses, but the full probability density method performs well

    Onset of efficacy with acute long-acting injectable paliperidone palmitate treatment in markedly to severely ill patients with schizophrenia: post hoc analysis of a randomized, double-blind clinical trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This post hoc analysis (trial registration: ClinicalTrials.gov NCT00590577) assessed onset of efficacy and tolerability of acute treatment with once-monthly paliperidone palmitate (PP), a long-acting atypical antipsychotic initiated by day 1 and day 8 injections, in a markedly to severely ill schizophrenia population.</p> <p>Methods</p> <p>Subjects entering the 13-week, double-blind trial were randomized to PP (39, 156, or 234 mg [25, 100, and 150 mg eq of paliperidone, respectively]) or placebo. This subgroup analysis included those with a baseline Clinical Global Impressions-Severity (CGI-S) score indicating marked to severe illness. PP subjects received a 234-mg day 1 injection (deltoid), followed by their assigned dose on day 8 and monthly thereafter (deltoid or gluteal). Thus, data for PP groups were pooled for days 4 and 8. Measures included Positive and Negative Syndrome Scale (PANSS), CGI-S, Personal and Social Performance (PSP), and adverse events (AEs). Analysis of covariance (ANCOVA) and last-observation-carried-forward (LOCF) methodologies, without multiplicity adjustments, were used to assess changes in continuous measures. Onset of efficacy was defined as the first time point a treatment group showed significant PANSS improvement (assessed days 4, 8, 22, 36, 64, and 92) versus placebo, which was maintained through end point.</p> <p>Results</p> <p>A total of 312 subjects met inclusion criterion for this subgroup analysis. After the day 1 injection, mean PANSS total scores improved significantly with PP (all received 234 mg) versus placebo at day 4 (<it>P </it>= 0.012) and day 8 (<it>P </it>= 0.007). After the day 8 injection, a significant PANSS improvement persisted at all subsequent time points in the 234-mg group versus placebo (<it>P </it>< 0.05). PANSS improvements were greater from day 36 through end point in the 156-mg group (<it>P </it>< 0.05) and only at end point in the 39-mg group (<it>P </it>< 0.05). CGI-S and PSP scores improved significantly in the 234-mg and 156-mg PP groups versus placebo at end point (<it>P </it>< 0.05 for both, respectively); improvement in the 39-mg group was not significant. The most common AEs for PP-treated subjects (≥10%, any treatment group) were headache, insomnia, schizophrenia exacerbation, injection site pain, and agitation.</p> <p>Conclusions</p> <p>In this markedly to severely ill population, acute treatment with 234 mg PP improved psychotic symptoms compared with placebo by day 4. After subsequent injections, observed improvements are suggestive of a dose-dependent effect. No unexpected tolerability findings were noted.</p

    The nature of the methanol maser ring G23.657-00.127

    Full text link
    Methanol masers are associated with young high-mass stars and are an important tool for investigating the process of massive star formation. The recently discovered methanol maser ring in G23.657-00.127 provides an excellent ``laboratory'' for a detailed study of the nature and physical origin of methanol maser emission, as well as parallax and proper motion measurements. Multi-epoch observations of the 12.2 GHz methanol maser line from the ring were conducted using the Very Long Baseline Array. Interferometric observations with milliarcsecond resolution enabled us to track single maser spots in great detail over a period of 2 years. We have determined the trigonometric parallax of G23.657-00.127 to be 0.313+/-0.039 mas, giving a distance of 3.19{+0.46}{-0.35} kpc. The proper motion of the source indicates that it is moving with the same circular velocity as the LSR, but it shows a large peculiar motion of about 35 km/s toward the Galactic center.Comment: 6 pages, 3 figures, accepted for publication in A&

    A single low-energy, iron-poor supernova as the source of metals in the star SMSS J 031300.36-670839.3

    Get PDF
    The element abundance ratios of four low-mass stars with extremely low metallicities indicate that the gas out of which the stars formed was enriched in each case by at most a few, and potentially only one low-energy, supernova. Such supernovae yield large quantities of light elements such as carbon but very little iron. The dominance of low-energy supernovae is surprising, because it has been expected that the first stars were extremely massive, and that they disintegrated in pair-instability explosions that would rapidly enrich galaxies in iron. What has remained unclear is the yield of iron from the first supernovae, because hitherto no star is unambiguously interpreted as encapsulating the yield of a single supernova. Here we report the optical spectrum of SMSS J031300.36- 670839.3, which shows no evidence of iron (with an upper limit of 10^-7.1 times solar abundance). Based on a comparison of its abundance pattern with those of models, we conclude that the star was seeded with material from a single supernova with an original mass of ~60 Mo (and that the supernova left behind a black hole). Taken together with the previously mentioned low-metallicity stars, we conclude that low-energy supernovae were common in the early Universe, and that such supernovae yield light element enrichment with insignificant iron. Reduced stellar feedback both chemically and mechanically from low-energy supernovae would have enabled first-generation stars to form over an extended period. We speculate that such stars may perhaps have had an important role in the epoch of cosmic reionization and the chemical evolution of early galaxies.Comment: 28 pages, 6 figures, Natur

    ECO AND RESOLVE: GALAXY DISK GROWTH IN ENVIRONMENTAL CONTEXT

    Get PDF
    We study the relationships between galaxy environments and galaxy properties related to disk (re)growth, considering two highly complete samples that are approximately baryonic mass limited into the high-mass dwarf galaxy regime, the Environmental COntext catalog (data release herein) and the B-semester region of the REsolved Spectroscopy Of a Local VolumE survey. We quantify galaxy environments using both group identification and smoothed galaxy density field methods. We use by-eye and quantitative morphological classifications plus atomic gas content measurements and estimates. We find that blue early-type (E/S0) galaxies, gas-dominated galaxies, and UV-bright disk host galaxies all become distinctly more common below group halo mass 1011.5  M\sim {10}^{11.5}\;{M}_{\odot }, implying that this low group halo mass regime may be a preferred regime for significant disk growth activity. We also find that blue early-type and blue late-type galaxies inhabit environments of similar group halo mass at fixed baryonic mass, consistent with a scenario in which blue early-types can regrow late-type disks. In fact, we find that the only significant difference in the typical group halo mass inhabited by different galaxy classes is for satellite galaxies with different colors, where at fixed baryonic mass red early- and late-types have higher typical group halo masses than blue early- and late-types. More generally, we argue that the traditional morphology–environment relation (i.e., that denser environments tend to have more early-types) can be largely attributed to the morphology-galaxy mass relation for centrals and the color–environment relation for satellites

    Knowledge discovery for friction stir welding via data driven approaches: Part 2 – multiobjective modelling using fuzzy rule based systems

    Get PDF
    In this final part of this extensive study, a new systematic data-driven fuzzy modelling approach has been developed, taking into account both the modelling accuracy and its interpretability (transparency) as attributes. For the first time, a data-driven modelling framework has been proposed designed and implemented in order to model the intricate FSW behaviours relating to AA5083 aluminium alloy, consisting of the grain size, mechanical properties, as well as internal process properties. As a result, ‘Pareto-optimal’ predictive models have been successfully elicited which, through validations on real data for the aluminium alloy AA5083, have been shown to be accurate, transparent and generic despite the conservative number of data points used for model training and testing. Compared with analytically based methods, the proposed data-driven modelling approach provides a more effective way to construct prediction models for FSW when there is an apparent lack of fundamental process knowledge
    corecore