31 research outputs found

    Expanding and Sustaining the Shellfisheries of Casco Bay (Fact Sheet)

    Get PDF
    Maine\u27s natural resources have always been important to its people. Timber, tourism, agriculture and fisheries are hallmarks of the state\u27s economy. The urbanization of southern Maine contributes to the impoverishment, contamination and outright destruction of vital components of Maine\u27s environment

    Dickey-Lincoln School Lakes Project Environmental Impact Statement: Appendix E: Aquatic Ecosystem and Fisheries Studies

    Get PDF
    Throughout this report, the following naming conventions will be used: the study area is the region of the Saint John River from Fort Kent to Ninemile Bridge and the drainage areas of all Saint John tributaries between Lincoln School and Ninemile Bridge within the United States, excluding the Allagash River drainage; the Dickey Lake Area is that region which would be inundated by the proposed Dickey Dam and the drainage areas of all rivers and streams (excluding the Saint John River) flowing into that proposed reservoir; the Lincoln School Reservoir area is that region which would be inundated by the proposed Lincoln School Dam, and the drainage areas of all tributaries flowing into that reservoir area; the downstream region is that portion of the Saint John River downstream of the proposed Lincoln School Dam to Madawaska

    Combined impacts of elevated CO2 and anthropogenic noise on European sea bass

    Get PDF
    There is another record in ORE for this publication: http://hdl.handle.net/10871/32962Ocean acidification (OA) and anthropogenic noise are both known to cause stress and induce physiological and behavioural changes in fish, with consequences for fitness. OA is also predicted to reduce the ocean's capacity to absorb low-frequency sounds produced by human activity. Consequently, anthropogenic noise could propagate further under an increasingly acidic ocean. For the first time, this study investigated the independent and combined impacts of elevated carbon dioxide (CO2) and anthropogenic noise on the behaviour of a marine fish, the European sea bass (Dicentrarchus labrax). In a fully factorial experiment crossing two CO2 levels (current day and elevated) with two noise conditions (ambient and pile driving), D. labrax were exposed to four CO2/noise treatment combinations: 400 µatm/ambient, 1000 µatm/ambient, 400 µatm/pile-driving, and 1000 µatm/pile-driving. Pile-driving noise increased ventilation rate (indicating stress) compared with ambient noise conditions. Elevated CO2 did not alter the ventilation rate response to noise. Furthermore, there was no interaction effect between elevated CO2 and pile-driving noise, suggesting that OA is unlikely to influence startle or ventilatory responses of fish to anthropogenic noise. However, effective management of anthropogenic noise could reduce fish stress, which may improve resilience to future stressors.Natural Environment Research Counci

    Increased noise levels have different impacts on the anti-predator behaviour of two sympatric fish species.

    Get PDF
    types: Journal ArticleCopyright: © 2014 Voellmy et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Animals must avoid predation to survive and reproduce, and there is increasing evidence that man-made (anthropogenic) factors can influence predator-prey relationships. Anthropogenic noise has been shown to have a variety of effects on many species, but work investigating the impact on anti-predator behaviour is rare. In this laboratory study, we examined how additional noise (playback of field recordings of a ship passing through a harbour), compared with control conditions (playback of recordings from the same harbours without ship noise), affected responses to a visual predatory stimulus. We compared the anti-predator behaviour of two sympatric fish species, the three-spined stickleback (Gasterosteus aculeatus) and the European minnow (Phoxinus phoxinus), which share similar feeding and predator ecologies, but differ in their body armour. Effects of additional-noise playbacks differed between species: sticklebacks responded significantly more quickly to the visual predatory stimulus during additional-noise playbacks than during control conditions, while minnows exhibited no significant change in their response latency. Our results suggest that elevated noise levels have the potential to affect anti-predator behaviour of different species in different ways. Future field-based experiments are needed to confirm whether this effect and the interspecific difference exist in relation to real-world noise sources, and to determine survival and population consequences.University of BristolBasler Stiftung für Biologische ForschungDefr
    corecore