6 research outputs found

    Impact of acute consumption of beverages containing plant-based or alternative sweetener blends on postprandial appetite, food intake, metabolism, and gastro-intestinal symptoms: Results of the SWEET beverages trial

    Get PDF
    Project SWEET examined the barriers and facilitators to the use of non-nutritive sweeteners and sweetness enhancers (hereafter "S&SE") alongside potential risks/benefits for health and sustainability. The Beverages trial was a double-blind multi-centre, randomised crossover trial within SWEET evaluating the acute impact of three S&SE blends (plant-based and alternatives) vs. a sucrose control on glycaemic response, food intake, appetite sensations and safety after a carbohydrate-rich breakfast meal. The blends were: mogroside V and stevia RebM; stevia RebA and thaumatin; and sucralose and acesulfame-potassium (ace-K). At each 4 h visit, 60 healthy volunteers (53% male; all with overweight/obesity) consumed a 330 mL beverage with either an S&SE blend (0 kJ) or 8% sucrose (26 g, 442 kJ), shortly followed by a standardised breakfast (∼2600 or 1800 kJ with 77 or 51 g carbohydrates, depending on sex). All blends reduced the 2-h incremental area-under-the-curve (iAUC) for blood insulin (p 0.05 for all). Compared with sucrose, there was a 3% increase in LDL-cholesterol after stevia RebA-thaumatin (p < 0.001 in adjusted models); and a 2% decrease in HDL-cholesterol after sucralose-ace-K (p < 0.01). There was an impact of blend on fullness and desire to eat ratings (both p < 0.05) and sucralose-acesulfame K induced higher prospective intake vs sucrose (p < 0.001 in adjusted models), but changes were of a small magnitude and did not translate into energy intake differences over the next 24 h. Gastro-intestinal symptoms for all beverages were mostly mild. In general, responses to a carbohydrate-rich meal following consumption of S&SE blends with stevia or sucralose were similar to sucrose

    Impact of acute consumption of beverages containing plant-based or alternative sweetener blends on postprandial appetite, food intake, metabolism, and gastro-intestinal symptoms: Results of the SWEET beverages trial

    Get PDF
    Project SWEET examined the barriers and facilitators to the use of non-nutritive sweeteners and sweetness enhancers (hereafter "S&SE") alongside potential risks/benefits for health and sustainability. The Beverages trial was a double-blind multi-centre, randomised crossover trial within SWEET evaluating the acute impact of three S&SE blends (plant-based and alternatives) vs. a sucrose control on glycaemic response, food intake, appetite sensations and safety after a carbohydrate-rich breakfast meal. The blends were: mogroside V and stevia RebM; stevia RebA and thaumatin; and sucralose and acesulfame-potassium (ace-K). At each 4h visit, 60 healthy volunteers (53% male; all with overweight/obesity) consumed a 330 mL beverage with either an S&SE blend (0 kJ) or 8% sucrose (26 g, 442 kJ), shortly followed by a standardised breakfast (∼2600 or 1800 kJ with 77 or 51 g carbohydrates, depending on sex). All blends reduced the 2-h incremental area-under-the-curve (iAUC) for blood insulin (p  0.05 for all). Compared with sucrose, there was a 3% increase in LDL-cholesterol after stevia RebA-thaumatin (p < 0.001 in adjusted models); and a 2% decrease in HDL-cholesterol after sucralose-ace-K (p < 0.01). There was an impact of blend on fullness and desire to eat ratings (both p < 0.05) and sucralose-acesulfame K induced higher prospective intake vs sucrose (p < 0.001 in adjusted models), but changes were of a small magnitude and did not translate into energy intake differences over the next 24h. Gastro-intestinal symptoms for all beverages were mostly mild. In general, responses to a carbohydrate-rich meal following consumption of S&SE blends with stevia or sucralose were similar to sucrose

    Low-energy sweeteners and body weight: A citation network analysis

    No full text
    OBJECTIVE: Reviews on the relationship of low-energy sweeteners (LES) with body weight (BW) have reached widely differing conclusions. To assess possible citation bias, citation analysis was used to quantify the relevant characteristics of cited articles, and explore citation patterns in relation to review conclusions. DESIGN: A systematic search identified reviews published from January 2010 to March 2020. Different characteristics (for example, type of review or research, journal impact factor, conclusions) were extracted from the reviews and cited articles. Logistic regression was used to estimate likelihood of articles with particular characteristics being cited in reviews. A qualitative network analysis linked reviews sub-grouped by conclusions with the types of articles they cited. MAIN OUTCOME MEASURES: (OR; 95% CI) for likelihood that articles with particular characteristics were cited as evidence in reviews. RESULTS: From 33 reviews identified, 183 different articles were cited (including other reviews). Narrative reviews were 62% less likely to be cited than systematic reviews with meta-analysis (OR 0.38; 0.16 to 0.86; p=0.03). Likelihood of being cited was higher for evidence on children than adults (OR 2.27; 1.59 to 3.25; p<0.0001), and with increased journal impact factor (OR 1.15; 1.00 to 1.31; p=0.04). No other factors were statistically significant in the main analysis, and few factors were significant in subgroup analyses. Network analysis showed that reviews concluding a beneficial relationship of LES with BW cited mainly randomised controlled trials, whereas reviews concluding an adverse relationship cited mainly observational studies. CONCLUSIONS: Overall reference to the available evidence across reviews appears largely arbitrary, making citation bias likely. Differences in the conclusions of individual reviews map onto different types of evidence cited. Overall, inconsistent and selective use of the available evidence may account for the diversity of conclusions in reviews on LES and BW. TRIAL REGISTRATION NUMBER: Prior to data analysis, the protocol was registered with the Open Science Framework (https://osf.io/9ghws)

    Identification of the Biosynthetic Gene Clusters for the Lipopeptides Fusaristatin A and W493 B in <i>Fusarium graminearum</i> and <i>F. pseudograminearum</i>

    No full text
    The closely related species <i>Fusarium graminearum</i> and <i>Fusarium pseudograminearum</i> differ in that each contains a gene cluster with a polyketide synthase (PKS) and a nonribosomal peptide synthetase (NRPS) that is not present in the other species. To identify their products, we deleted <i>PKS6</i> and <i>NRPS7</i> in <i>F. graminearum</i> and <i>NRPS32</i> in <i>F. pseudograminearum</i>. By comparing the secondary metabolite profiles of the strains we identified the resulting product in <i>F. graminearum</i> as fusaristatin A, and as W493 A and B in <i>F. pseudograminearum.</i> These lipopeptides have previously been isolated from unidentified <i>Fusarium</i> species. On the basis of genes in the putative gene clusters we propose a model for biosynthesis where the polyketide product is shuttled to the NPRS via a CoA ligase and a thioesterase in <i>F. pseudograminearum</i>. In <i>F. graminearum</i> the polyketide is proposed to be directly assimilated by the NRPS

    Acute and repeated impact of sweeteners and sweetness enhancers in solid and semi-solid foods on appetite : protocol for a multicentre, cross-over, RCT in people with overweight/obesity - the SWEET Project

    Get PDF
    INTRODUCTION: Intake of free sugars in European countries is high and attempts to reduce sugar intake have been mostly ineffective. Non-nutritive sweeteners and sweetness enhancers (S&SEs) can maintain sweet taste in the absence of energy, but little is known about the impact of acute and repeated consumption of S&SE in foods on appetite. This study aims to evaluate the effect of acute and repeated consumption of two individual S&SEs and two S&SE blends in semisolid and solid foods on appetite and related behavioural, metabolic and health outcomes. METHODS AND ANALYSIS: A work package of the SWEET Project; this study consists of five double-blind randomised cross-over trials which will be carried out at five sites across four European countries, aiming to have n=213. Five food matrices will be tested across three formulations (sucrose-sweetened control vs two reformulated products with S&SE blends and no added sugar). Participants (body mass index 25-35 kg/m2; aged 18-60 years) will consume each formulation for 14 days. The primary endpoint is composite appetite score (hunger, inverse of fullness, desire to eat and prospective food consumption) over a 3-hour postprandial incremental area under the curve during clinical investigation days on days 1 and 14. ETHICS AND DISSEMINATION: The trial has been approved by national ethical committees and will be conducted in accordance with the Declaration of Helsinki. Results will be published in international peer-reviewed open-access scientific journals. Research data from the trial will be deposited in an open-access online research data archive. TRIAL REGISTRATION NUMBER: NCT04633681

    Impact of acute consumption of beverages containing plant-based or alternative sweetener blends on postprandial appetite, food intake, metabolism, and gastro-intestinal symptoms: Results of the SWEET beverages trial

    No full text
    Project SWEET examined the barriers and facilitators to the use of non-nutritive sweeteners and sweetness enhancers (hereafter "S&SE") alongside potential risks/benefits for health and sustainability. The Beverages trial was a double-blind multi-centre, randomised crossover trial within SWEET evaluating the acute impact of three S&SE blends (plant-based and alternatives) vs. a sucrose control on glycaemic response, food intake, appetite sensations and safety after a carbohydrate-rich breakfast meal. The blends were: mogroside V and stevia RebM; stevia RebA and thaumatin; and sucralose and acesulfame-potassium (ace-K). At each 4 h visit, 60 healthy volunteers (53% male; all with overweight/obesity) consumed a 330 mL beverage with either an S&SE blend (0 kJ) or 8% sucrose (26 g, 442 kJ), shortly followed by a standardised breakfast (∼2600 or 1800 kJ with 77 or 51 g carbohydrates, depending on sex). All blends reduced the 2-h incremental area-under-the-curve (iAUC) for blood insulin (p 0.05 for all). Compared with sucrose, there was a 3% increase in LDL-cholesterol after stevia RebA-thaumatin (p < 0.001 in adjusted models); and a 2% decrease in HDL-cholesterol after sucralose-ace-K (p < 0.01). There was an impact of blend on fullness and desire to eat ratings (both p < 0.05) and sucralose-acesulfame K induced higher prospective intake vs sucrose (p < 0.001 in adjusted models), but changes were of a small magnitude and did not translate into energy intake differences over the next 24 h. Gastro-intestinal symptoms for all beverages were mostly mild. In general, responses to a carbohydrate-rich meal following consumption of S&SE blends with stevia or sucralose were similar to sucrose
    corecore