7 research outputs found

    Restoration Of Glutamine Synthetase Activity, Nitric Oxide Levels And Amelioration Of Oxidative Stress By Propolis In Kainic Acid Mediated Excitotoxicity

    Get PDF
    Background: Propolis has been proposed to be protective on neurodegenerative disorders. To understand the neuroprotective effects of honeybee propolis, glutamine synthetase (GS) activity, nitric oxide (NO), thiobarbituric acid reactive substances (TBARS) and total antioxidant status (TAS) were studied in different brain regions- cerebral cortex (CC), cerebellum (CB) and brain stem (BS) of rats supplemented with propolis and subjected to kainic acid (KA) mediated excitotoxicity.Materials and Methods: Male Sprague-Dawley rats were divided into four groups; Control group and KA group received vehicle and saline. Propolis group and propolis + KA group were orally administered with propolis (150mg/kg body weight), five times every 12 hours. KA group and propolis + KA group were injected subcutaneously with kainic acid (15mg/kg body weight) and were sacrificed after 2 hrs and CC, CB and BS were separated homogenized and used for estimation of GS activity, NO, TBARS, and TAS concentrations by colorimetric methods. Results were analyzed by oneway ANOVA, reported as mean + SD from 6 animals, and p<0.05 considered statistically significant.Results: NO was increased (p< 0.001) and GS activity was decreased (p< 0.001) in KA treated group compared to control group as well as propolis + KA treated group. TBARS was decreased and TAS was increased (p< 0.001) in propolis + KA treated group compared KA treated group.Conclusion: This study clearly demonstrated the restoration of GS activity, NO levels and decreased oxidative stress by propolis in kainic acid mediated excitotoxicity. Hence the propolis can be a possible potential candidate (protective agent) against excitotoxicity and neurodegenerative disorders.Keywords: Nitric oxide, Glutamine Synthetase, Oxidative Stress, Excitotoxicity, Propolis, Rat Brain

    Genome-wide Association Study Identifies Five New Susceptibility Loci For Primary Angle Closure Glaucoma

    No full text
    Primary angle closure glaucoma (PACG) is a major cause of blindness worldwide. We conducted a genome-wide association study (GWAS) followed by replication in a combined total of 10,503 PACG cases and 29,567 controls drawn from 24 countries across Asia, Australia, Europe, North America, and South America. We observed significant evidence of disease association at five new genetic loci upon meta-analysis of all patient collections. These loci are at EPDR1 rs3816415 (odds ratio (OR) = 1.24, P = 5.94 x 10(-15)), CHAT rs1258267 (OR = 1.22, P = 2.85 x 10(-16)), GLIS3 rs736893 (OR = 1.18, P = 1.43 x 10(-14)), FERMT2 rs7494379 (OR = 1.14, P = 3.43 x 10(-11)), and DPM2-FAM102A rs3739821 (OR = 1.15, P = 8.32 x 10(-12)). We also confirmed significant association at three previously described loci (P < 5 x 10(-8) for each sentinel SNP at PLEKHA7, COL11A1, and PCMTD1-ST18)(1), providing new insights into the biology of PACG.485556+Singapore Ministry of Health's National Medical Research Council under its Translational and Clinical Research (TCR) Flagship Programme Grant Stratified Medicine for Primary Angle Closure Glaucoma [NMRC/TCR/008-SERI/2013]Singapore Translational Research (STaR) Investigator Award Singapore Angle Closure Glaucoma Program Characterization, Prevention, and Management [NMRC/STAR/0023/2014]Biomedical Research CouncilAgency for Science, Technology and Research (A-STAR), SingaporeUniversiti Sains Malaysia [RUI 1001/PPSP/812101, RUI 1001/PPSP/812152]Program of Beijing ScholarsLeading Talents-High-Level Talents of the Health System of Beijing [2009-1-05]National Major Scientific and Technological Special Project for 'Significant New Drugs Development' [2011ZX09302-007-05]National Natural Science Foundation of China [81570837

    Genome-wide association study identifies five new susceptibility loci for primary angle closure glaucoma.

    No full text
    Primary angle closure glaucoma (PACG) is a major cause of blindness worldwide. We conducted a genome-wide association study (GWAS) followed by replication in a combined total of 10,503 PACG cases and 29,567 controls drawn from 24 countries across Asia, Australia, Europe, North America, and South America. We observed significant evidence of disease association at five new genetic loci upon meta-analysis of all patient collections. These loci are at EPDR1 rs3816415 (odds ratio (OR) = 1.24, P = 5.94 Ă— 10(-15)), CHAT rs1258267 (OR = 1.22, P = 2.85 Ă— 10(-16)), GLIS3 rs736893 (OR = 1.18, P = 1.43 Ă— 10(-14)), FERMT2 rs7494379 (OR = 1.14, P = 3.43 Ă— 10(-11)), and DPM2-FAM102A rs3739821 (OR = 1.15, P = 8.32 Ă— 10(-12)). We also confirmed significant association at three previously described loci (P < 5 Ă— 10(-8) for each sentinel SNP at PLEKHA7, COL11A1, and PCMTD1-ST18), providing new insights into the biology of PACG

    Genome-wide association study identifies five new susceptibility loci for primary angle closure glaucoma

    No full text
    corecore