144 research outputs found

    (5 R

    Full text link

    Novel macrolactam compound produced by the heterologous expression of a large cryptic biosynthetic gene cluster of Streptomyces rochei IFO12908

    Get PDF
    In the course of our studies on the heterologous expression of giant biosynthetic genes, we discovered a novel cryptic biosynthetic gene cluster in Streptomyces rochei IFO12908. During our efforts to express biosynthetic genes using the host SUKA strain derived from Streptomyces avermitilis, a novel polyene macrolactam compound designated as JBIR-156 was produced. We report herein the cloning and heterologous expression of the JBIR-156 biosynthetic gene cluster, and the isolation, structure determination, and cytotoxic activity of this novel compound

    Male alternative reproductive tactics and associated evolution of anatomical characteristics in loliginid squid

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marian, J. E. A. R., Apostólico, L. H., Chiao, C. C., Hanlon, R. T., Hirohashi, N., Iwata, Y., Mather, J., Sato, N., & Shaw, P. W. Male alternative reproductive tactics and associated evolution of anatomical characteristics in loliginid squid. Frontiers in Physiology, 10, (2019): 1281, doi: 10.3389/fphys.2019.01281.Loliginid squids provide a unique model system to explore male alternative reproductive tactics (ARTs) and their linkage to size, behavioral decision making, and possibly age. Large individuals fight one another and the winners form temporary consortships with females, while smaller individuals do not engage in male-male agonistic bouts but use various sneaker tactics to obtain matings, each with varying mating and fertilization success. There is substantial behavioral flexibility in most species, as smaller males can facultatively switch to the alternative consort behaviors as the behavioral context changes. These forms of ARTs can involve different: mating posture; site of spermatophore deposition; fertilization success; and sperm traits. Most of the traits of male dimorphism (both anatomical and behavioral) are consistent with traditional sexual selection theory, while others have unique features that may have evolved in response to the fertilization environment faced by each temporary or permanent male morph.JM acknowledges the funding provided by FAPESP (São Paulo Research Foundation – proc. 2013/02653-1, 2014/11008-5, 2015/15447-6, 2017/16182-1, and 2018/19180-2), CNPq (National Council for Scientific and Technological Development – proc. 477233/2013–9), and CAPES (Coordination for the Improvement of Higher Education Personnel – Finance Code 001)

    An isoflavone catabolism gene cluster underlying interkingdom interactions in the soybean rhizosphere

    Get PDF
    ダイズ根圏細菌のイソフラボン代謝遺伝子クラスターを発見--根圏形成メカニズムの理解や有用物質生産に貢献--.京都大学プレスリリース. 2024-04-24.Plant roots secrete various metabolites, including plant specialized metabolites, into the rhizosphere, and shape the rhizosphere microbiome, which is crucial for the plant health and growth. Isoflavones are major plant specialized metabolites found in legume plants, and are involved in interactions with soil microorganisms as initiation signals in rhizobial symbiosis and as modulators of the legume root microbiota. However, it remains largely unknown the molecular basis underlying the isoflavone-mediated interkingdom interactions in the legume rhizosphere. Here, we isolated Variovorax sp. strain V35, a member of the Comamonadaceae that harbors isoflavone-degrading activity, from soybean roots and discovered a gene cluster responsible for isoflavone degradation named ifc. The characterization of ifc mutants and heterologously expressed Ifc enzymes revealed that isoflavones undergo oxidative catabolism, which is different from the reductive metabolic pathways observed in gut microbiota. We further demonstrated that the ifc genes are frequently found in bacterial strains isolated from legume plants, including mutualistic rhizobia, and contribute to the detoxification of the antibacterial activity of isoflavones. Taken together, our findings reveal an isoflavone catabolism gene cluster in the soybean root microbiota, providing molecular insights into isoflavone-mediated legume–microbiota interactions

    Improving the photoresponse spectra of BaSi2 layers by capping with hydrogenated amorphous Si layers prepared by radio-frequency hydrogen plasma

    Get PDF
    We studied the surface passivation effect of hydrogenated amorphous silicon (a-Si:H) layers on BaSi2 films. a-Si:H was formed by an electron-beam evaporation of Si, and a supply of atomic hydrogen using radio-frequency plasma. Surface passivation effect was first investigated on a conventional n-Si(111) substrate by capping with 20 nm-thick a-Si:H layers, and next on a 0.5 μm-thick BaSi2 film on Si(111) by molecular beam epitaxy. The internal quantum efficiency distinctly increased by 4 times in a wide wavelength range for sample capped in situ with a 3 nm-thick a-Si:H layer compared to those capped with a pure a-Si layer

    Cortical Connections to Area TE in Monkey: Hybrid Modular and Distributed Organization

    Get PDF
    To investigate the fine anatomical organization of cortical inputs to visual association area TE, 2–3 small injections of retrograde tracers were made in macaque monkeys. Injections were made as a terminal procedure, after optical imaging and electrophysiological recording, and targeted to patches physiologically identified as object-selective. Retrogradely labeled neurons occurred in several unimodal visual areas, the superior temporal sulcus, intraparietal sulcus (IPS), and prefrontal cortex (PFC), consistent with previous studies. Despite the small injection size (<0.5 mm wide), the projection foci in visual areas, but not in IPS or PFC, were spatially widespread (4–6 mm in extent), and predominantly consisted of neurons labeled by only one of the injections. This can be seen as a quasi-modular organization. In addition, within each projection focus, there were scattered neurons projecting to one of the other injections, together with some double-labeled (DL) neurons, in a more distributed pattern. Finally, projection foci included smaller “hotspots,” consisting of intermixed neurons, single-labeled by the different injections, and DL neurons. DL neurons are likely the result of axons having extended, spatially separated terminal arbors, as demonstrated by anterograde experiments. These results suggest a complex, hybrid connectivity architecture, with both modular and distributed components

    Abnormal axon guidance signals and reduced interhemispheric connection via anterior commissure in neonates of marmoset ASD model

    Get PDF
    In autism spectrum disorder (ASD), disrupted functional and structural connectivity in the social brain has been suggested as the core biological mechanism underlying the social recognition deficits of this neurodevelopmental disorder. In this study, we aimed to identify genetic and neurostructural abnormalities at birth in a non-human primate model of ASD, the common marmoset with maternal exposure to valproic acid (VPA), which has been reported to display social recognition deficit in adulthood. Using a comprehensive gene expression analysis, we found that 20 genes were significantly downregulated in VPA-exposed neonates. Of these, Frizzled3 (FZD3) and PIK3CA were identified in an axon guidance signaling pathway. FZD3 is essential for the normal development of the anterior commissure (AC) and corpus callosum (CC); hence, we performed diffusion tensor magnetic resonance imaging with a 7-Tesla scanner to measure the midsagittal sizes of these structures. We found that the AC size in VPA-exposed neonates was significantly smaller than that in age-matched controls, while the CC size did not differ. These results suggest that downregulation of the genes related to axon guidance and decreased AC size in neonatal primates may be linked to social brain dysfunctions that can happen later in life
    corecore