35 research outputs found

    Contribution of soft-bodied meiofaunal taxa to Italian marine biodiversity

    Get PDF
    Meiofauna includes an astonishing diversity of organisms, whose census is far from being complete. Most classic ecological studies have focused on hard-bodied Ecdysozoan taxa (notably Copepoda and Nematoda), whose cuticle allows determination at species-level after fixation, rather than soft-bodied, Spiralian taxa, which most often lose any diagnostic feature in fixed samples. Yet, metabarcoding studies have recently revealed a species-richness of softbodied taxa comparable, and in cases superior, to that of Copepoda and Nematoda together. However, given objective difficulties inherent to their study, which necessarily has to be performed on living individuals, and their limited utilisation for ecological and applicative research, taxonomic expertise on soft-bodied organisms has declined over the years, and diversity of these phyla in most areas of the world is presently completely unknown. Here we present an expert-based survey of current knowledge on the composition and distribution of soft-bodied meiofaunal taxa in Italy, with special references to the predominantly or exclusively meiobenthic phyla Gastrotricha, Gnathostomulida, Platyhelminthes, Rotifera, Xenacoelomorpha, and macrofaunal taxa with conspicuous meiofaunal representatives (Annelida, Mollusca and Nemertea). A total of 638 described species have been reported from Italian coasts; furthermore, the existence of a large number of undescribed species is mentioned. Knowledge of Annelida, Gastrotricha, and Rotifera appears particularly detailed, placing Italy among the best-known country worldwide. In contrast, knowledge of Platyhelminthes and Xenacoelomorpha appears patchy, and limited to few areas. Sampling effort has been uneven, with most species recorded from the Tyrrhenian Sea, while large sections of the Adriatic and Ionian seas have been poorly explored. Results highlight the role that Marine Biological Stations, notably the Zoological Station “Anton Dohrn” in Naples, have had in promoting the study of soft-bodied taxa in Ital

    Sampling multiple life stages significantly increases estimates of marine biodiversity

    Get PDF
    Biodiversity assessments are critical for setting conservation priorities, understanding ecosystem function and establishing a baseline to monitor change. Surveys of marine biodiversity that rely almost entirely on sampling adult organisms underestimate diversity because they tend to be limited to habitat types and individuals that can be easily surveyed. Many marine animals have planktonic larvae that can be sampled from the water column at shallow depths. This life stage often is overlooked in surveys but can be used to relatively rapidly document diversity, especially for the many species that are rare or live cryptically as adults. Using DNA barcode data from samples of nemertean worms collected in three biogeographical regions—Northeastern Pacific, the Caribbean Sea and Eastern Tropical Pacific—we found that most species were collected as either benthic adults or planktonic larvae but seldom in both stages. Randomization tests show that this deficit of operational taxonomic units collected as both adults and larvae is extremely unlikely if larvae and adults were drawn from the same pool of species. This effect persists even in well-studied faunas. These results suggest that sampling planktonic larvae offers access to a different subset of species and thus significantly increases estimates of biodiversity compared to sampling adults alone. Spanish abstract is available in the electronic supplementary material.Fil: Maslakova, Svetlana A.. University of Oregon; Estados UnidosFil: Ellison, Christina I.. University of Oregon; Estados UnidosFil: Hiebert, Terra C.. University of Oregon; Estados UnidosFil: Conable, Frances. University of Oregon; Estados UnidosFil: Heapy, Maureen C.. University of Oregon; Estados UnidosFil: Venera Pontón, Dagoberto E.. Smithsonian Tropical Research Institute; PanamáFil: Norenburg, Jon L.. National Museum Of Natural History. Departamento de Zoología. Area de Invertebrados; Estados UnidosFil: Schwartz, Megan L.. University of Washington; Estados UnidosFil: Boyle, Michael J.. Smithsonian Tropical Research Institute; PanamáFil: Driskell, Amy C.. National Museum Of Natural History. Departamento de Zoología. Area de Invertebrados; Estados UnidosFil: Macdonald, Kenneth S.. National Museum Of Natural History. Departamento de Zoología. Area de Invertebrados; Estados UnidosFil: Zattara, Eduardo Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Collin, Rachel. Smithsonian Tropical Research Institute; Panam

    Biodiversity estimates and ecological interpretations of meiofaunal communities are biased by the taxonomic approach

    Get PDF
    Accurate assessments of biodiversity are crucial to advising ecosystem-monitoring programs and understanding ecosystem function. Nevertheless, a standard operating procedure to assess biodiversity accurately and consistently has not been established. This is especially true for meiofauna, a diverse community (>20 phyla) of small benthic invertebrates that have fundamental ecological roles. Recent studies show that metabarcoding is a cost-effective and timeeffective method to estimate meiofauna biodiversity, in contrast to morphological-based taxonomy. Here, we compare biodiversity assessments of a diverse meiofaunal community derived by applying multiple taxonomic methods based on comparative morphology, molecular phylogenetic analysis, DNA barcoding of individual specimens, and metabarcoding of environmental DNA. We show that biodiversity estimates are strongly biased across taxonomic methods and phyla. Such biases affect understanding of community structures and ecological interpretations. This study supports the urgency of improving aspects of environmental high-throughput sequencing and the value of taxonomists in correctly understanding biodiversity estimates

    Statistical Parsimony Networks and Species Assemblages in Cephalotrichid Nemerteans (Nemertea)

    Get PDF
    BACKGROUND: It has been suggested that statistical parsimony network analysis could be used to get an indication of species represented in a set of nucleotide data, and the approach has been used to discuss species boundaries in some taxa. METHODOLOGY/PRINCIPAL FINDINGS: Based on 635 base pairs of the mitochondrial protein-coding gene cytochrome c oxidase I (COI), we analyzed 152 nemertean specimens using statistical parsimony network analysis with the connection probability set to 95%. The analysis revealed 15 distinct networks together with seven singletons. Statistical parsimony yielded three networks supporting the species status of Cephalothrix rufifrons, C. major and C. spiralis as they currently have been delineated by morphological characters and geographical location. Many other networks contained haplotypes from nearby geographical locations. Cladistic structure by maximum likelihood analysis overall supported the network analysis, but indicated a false positive result where subnetworks should have been connected into one network/species. This probably is caused by undersampling of the intraspecific haplotype diversity. CONCLUSIONS/SIGNIFICANCE: Statistical parsimony network analysis provides a rapid and useful tool for detecting possible undescribed/cryptic species among cephalotrichid nemerteans based on COI gene. It should be combined with phylogenetic analysis to get indications of false positive results, i.e., subnetworks that would have been connected with more extensive haplotype sampling

    The Magnitude of Global Marine Species Diversity

    Get PDF
    Background: The question of how many marine species exist is important because it provides a metric for how much we do and do not know about life in the oceans. We have compiled the first register of the marine species of the world and used this baseline to estimate how many more species, partitioned among all major eukaryotic groups, may be discovered. Results: There are ∼226,000 eukaryotic marine species described. More species were described in the past decade (∼20,000) than in any previous one. The number of authors describing new species has been increasing at a faster rate than the number of new species described in the past six decades. We report that there are ∼170,000 synonyms, that 58,000–72,000 species are collected but not yet described, and that 482,000–741,000 more species have yet to be sampled. Molecular methods may add tens of thousands of cryptic species. Thus, there may be 0.7–1.0 million marine species. Past rates of description of new species indicate there may be 0.5 ± 0.2 million marine species. On average 37% (median 31%) of species in over 100 recent field studies around the world might be new to science. Conclusions: Currently, between one-third and two-thirds of marine species may be undescribed, and previous estimates of there being well over one million marine species appear highly unlikely. More species than ever before are being described annually by an increasing number of authors. If the current trend continues, most species will be discovered this century

    DNA Uncovers Antarctic Nemertean Biodiversity and Exposes a Decades-Old Cold Case of Asymmetric Inventory

    No full text
    With threats to biodiversity posed by anthropogenic impacts and global climate change, characterization of existing flora and fauna is increasingly important, but continues to focus predominantly on easily studied taxa. In the Southern Ocean, levels of species richness remain relatively unexplored due to remoteness and difficulties of sampling the region. Nemerteans (proboscis worms; ribbon worms) are unusually abundant and occasionally conspicuous in the Antarctic region. Despite being routinely collected, difficulties in preserving voucher material, morphological limitations, and shortage of taxonomic expertise have hindered our understanding of nemertean diversity. To assess patterns of diversity, we examined a fragment of the mitochondrial 16S rRNA gene from larval and adult nemerteans (n= 192) from 53 sites along the western Antarctic Peninsula. We found 20 distinct lineages having an uncorrected genetic distance (p) greater than 5% to the nearest sister taxon or group, 19 of which have not been genetically characterized in previous studies. Additionally, the putatively dominant adult species in the region, Parborlasia corrugatus, was found to comprise only 4.3% of larvae sampled (n= 3 out of 69 samples from 12 locations). Of 47 nemertean species recorded from Antarctic waters, 20 are heteronemerateans and therefore could have a pelagic pilidium larval phase. These results suggest that Antarctic biodiversity is underestimated, and that unknown species of nemerteans await description from Southern Ocean waters

    Uncovering the shell game with barcodes: diversity of meiofaunal Caecidae snails (Truncatelloidea, Caenogastropoda) from Central America

    Get PDF
    Caecidae is a species-rich family of microsnails with a worldwide distribution. Typical for many groups of gastropods, caecid taxonomy is largely based on overt shell characters. However, identification of species using shell characteristics is problematic due to their rather uniform, tubular shells, the presence of different growth stages, and a high degree of intraspecific variability. In the present study, a first integrative approach to caecid taxonomy is provided using light-microscopic investigation with microsculptural analyses and multi-marker barcoding, in conjunction with molecular species delineation analyses (ABGD, haplotype networks, GMYC, and bPTP). In total 132 specimens of Caecum and Meioceras collected during several sampling trips to Central America were analyzed and delineated into a minimum of 19 species to discuss putative synonyms, and supplement the original descriptions. Molecular phylogenetic analyses suggest Meioceras nitidum and M. cubitatum should be reclassified as Caecum, and the genus Meioceras might present a junior synonym of Caecum. Meiofaunal caecids morphologically resembling C. glabrum from the Northeast Atlantic are a complex of cryptic species with independent evolutionary origins, likely associated with multiple habitat shifts to the mesopsammic environment. Caecum invisibile Egger & Jörger, sp. nov. is formally described based on molecular diagnostic characters. This first integrative approach towards the taxonomy of Caecidae increases the known diversity, reveals the need for a reclassification of the genus Caecum and serves as a starting point for a barcoding library of the family, thereby enabling further reliable identifications of these taxonomically challenging microsnails in future studies
    corecore