29 research outputs found

    Protestbevegelse eller nytt kirkesamfunn?

    Get PDF
    Denne artikkelen handler om relasjonen mellom Den norske kirke og den delen av den læstadianske bevegelsen som kalles de førstefødte. I 2000 besluttet de førstefødte å la sine predikanter forrette dåp og nattverd i bevegelsens egne forsamlingshus, og innenfor rammen av forsamlingenes ordinære møter. Vedtaket var et sterkt signal om et oppbrudd fra kirkens sakramentsforvaltning. Artikkelen sikter mot å klargjøre hva som likevel holder bevegelsen tilbake i forhold til å etablere seg som et eget kirkesamfunn

    Læstadianerne og kirken De førstefødtes og Lyngen-retningens forhold til Den norske kirke ved inngangen til 2000-tallet

    No full text
    Avhandlingen beskriver den læstadianske bevegelsens relasjon til Den norske kirke med hovedvekt på tidsrommet 2000-2010. Det er to av de læstadianske retningene i Norge som behandles, De førstefødte og Lyngen-retningen. Avhandlingen tar utgangspunkt i to konflikter som kom til syne i dette tidsrommet, først i De førstefødte relasjon til kirken fra 2000, deretter i Lyngen-retningens relasjon til kirken i 2008. Spørsmålet som stilles er hvorvidt uroen som viste seg henger sammen med overordnede samfunnsprosesser som ved inngangen til 2000-tallet berørte Den norske kirke som helhet, og derved også den læstadianske bevegelsen. Den læstadianske bevegelsen er sprunget ut av kirken, og tilhører kirken i kraft av medlemskap. Fram mot 2000-tallet fikk flere historiske prosesser ny aktualitet. Kirken ble gradvis skilt ut av staten og fremsto med en egen organisasjon ved siden av det statlige kirkestyret. Det norske samfunnet utviklet seg samtidig i retning av større mangfold med hensyn til tro og livssyn. I denne situasjonen justerte Den norske kirke sin identitet som statskirke, og beveget seg i retning av å fremstå som en egen organisasjon, forskjellig fra statssystemet. Drivkraften bak denne utviklingen viser seg å være hensynet til egen vekst i en situasjon der samfunnsvilkårene endres. I denne situasjonen viser det seg at også De førstefødte og Lyngen-retningen sine identiteter i relasjon til Den norske kirke ut fra sine historiske forutsetninger. Nøkkelord: Læstadianisme, statskirke, differensierin

    Key Brain Network Nodes Show Differential Cognitive Relevance and Developmental Trajectories during Childhood and Adolescence

    No full text
    Human adolescence is a period of rapid changes in cognition and goal-directed behavior, and it constitutes a major transitional phase towards adulthood. One of the mechanisms suggested to underlie the protracted maturation of functional brain networks, is the increased network integration and segregation enhancing neural efficiency. Importantly, the increasing coordinated network interplay throughout development is mediated through functional hubs, which are highly connected brain areas suggested to be pivotal nodes for the regulation of neural activity. To elucidate brain hub development during childhood and adolescence, we estimated voxel-wise eigenvector centrality (EC) using functional magnetic resonance imaging (fMRI) data from two different psychological contexts (resting state and a working memory task), in a large cross-sectional sample (n = 754) spanning the age from 8 to 22 years, and decomposed the maps using independent component analysis (ICA). Our results reveal significant age-related centrality differences in cingulo-opercular, visual, and sensorimotor network nodes during both rest and task performance, suggesting that common neurodevelopmental processes manifest across different mental states. Supporting the functional significance of these developmental patterns, the centrality of the cingulo-opercular node was positively associated with task performance. These findings provide evidence for protracted maturation of hub properties in specific nodes of the brain connectome during the course of childhood and adolescence and suggest that cingulo-opercular centrality is a key factor supporting neurocognitive development

    Experience-dependent modulation of the visual evoked potential: Testing effect sizes, retention over time, and associations with age in 415 healthy individuals

    Get PDF
    Experience-dependent modulation of the visual evoked potential (VEP) is a promising proxy measure of synaptic plasticity in the cerebral cortex. However, existing studies are limited by small to moderate sample sizes as well as by considerable variability in how VEP modulation is quantified. In the present study, we used a large sample (n = 415) of healthy volunteers to compare different quantifications of VEP modulation with regards to effect sizes and retention of the modulation effect over time. We observed significant modulation for VEP components C1 (Cohen's d = 0.53), P1 (d = 0.66), N1 (d=-0.27), N1b (d=-0.66), but not P2 (d = 0.08), and in three clusters of total power modulation, 2–4 min after 2 Hz prolonged visual stimulation. For components N1 (d=-0.21) and N1b (d=-0.38), as well for the total power clusters, this effect was retained after 54–56 min, by which time also the P2 component had gained modulation (d = 0.54). Moderate to high correlations (0.39≤ρ≤0.69) between modulation at different postintervention blocks revealed a relatively high temporal stability in the modulation effect for each VEP component. However, different VEP components also showed markedly different temporal retention patterns. Finally, participant age correlated negatively with C1 (χ2=30.4), and positively with P1 modulation (χ2=13.4), whereas P2 modulation was larger for female participants (χ2=15.4). There were no effects of either age or sex on N1 and N1b potentiation. These results provide strong support for VEP modulation, and especially N1b modulation, as a robust measure of synaptic plasticity, but underscore the need to differentiate between components, and to control for demographic confounders

    Evidence for Reduced Long-Term Potentiation-Like Visual Cortical Plasticity in Schizophrenia and Bipolar Disorder

    Get PDF
    Abstract Several lines of research suggest that impairments in long-term potentiation (LTP)-like synaptic plasticity might be a key pathophysiological mechanism in schizophrenia (SZ) and bipolar disorder type I (BDI) and II (BDII). Using modulations of visually evoked potentials (VEP) of the electroencephalogram, impaired LTP-like visual cortical plasticity has been implicated in patients with BDII, while there has been conflicting evidence in SZ, a lack of research in BDI, and mixed results regarding associations with symptom severity, mood states, and medication. We measured the VEP of patients with SZ spectrum disorders (n = 31), BDI (n = 34), BDII (n = 33), and other BD spectrum disorders (n = 2), and age-matched healthy control (HC) participants (n = 200) before and after prolonged visual stimulation. Compared to HCs, modulation of VEP component N1b, but not C1 or P1, was impaired both in patients within the SZ spectrum (χ 2 = 35.1, P = 3.1 × 10−9) and BD spectrum (χ 2 = 7.0, P = 8.2 × 10−3), including BDI (χ 2 = 6.4, P = .012), but not BDII (χ 2 = 2.2, P = .14). N1b modulation was also more severely impaired in SZ spectrum than BD spectrum patients (χ 2 = 14.2, P = 1.7 × 10−4). N1b modulation was not significantly associated with Positive and Negative Syndrome Scale (PANSS) negative or positive symptoms scores, number of psychotic episodes, Montgomery and Åsberg Depression Rating Scale (MADRS) scores, or Young Mania Rating Scale (YMRS) scores after multiple comparison correction, although a nominal association was observed between N1b modulation and PANSS negative symptoms scores among SZ spectrum patients. These results suggest that LTP-like plasticity is impaired in SZ and BD. Adding to previous genetic, pharmacological, and electrophysiological evidence, these results implicate aberrant synaptic plasticity as a mechanism underlying SZ and BD

    Brain age prediction reveals aberrant brain white matter in schizophrenia and bipolar disorder: A multi-sample diffusion tensor imaging study

    No full text
    Background Schizophrenia (SZ) and bipolar disorder (BD) share substantial neurodevelopmental components affecting brain maturation and architecture. This necessitates a dynamic lifespan perspective in which brain aberrations are inferred from deviations from expected lifespan trajectories. We applied machine learning to diffusion tensor imaging (DTI) indices of white matter structure and organization to estimate and compare brain age between patients with SZ, patients with BD, and healthy control (HC) subjects across 10 cohorts. Methods We trained 6 cross-validated models using different combinations of DTI data from 927 HC subjects (18–94 years of age) and applied the models to the test sets including 648 patients with SZ (18–66 years of age), 185 patients with BD (18–64 years of age), and 990 HC subjects (17–68 years of age), estimating the brain age for each participant. Group differences were assessed using linear models, accounting for age, sex, and scanner. A meta-analytic framework was applied to assess the heterogeneity and generalizability of the results. Results Tenfold cross-validation revealed high accuracy for all models. Compared with HC subjects, the model including all feature sets significantly overestimated the age of patients with SZ (Cohen’s d = −0.29) and patients with BD (Cohen’s d = 0.18), with similar effects for the other models. The meta-analysis converged on the same findings. Fractional anisotropy–based models showed larger group differences than the models based on other DTI-derived metrics. Conclusions Brain age prediction based on DTI provides informative and robust proxies for brain white matter integrity. Our results further suggest that white matter aberrations in SZ and BD primarily consist of anatomically distributed deviations from expected lifespan trajectories that generalize across cohorts and scanners

    Brain Age Prediction Reveals Aberrant Brain White Matter in Schizophrenia and Bipolar Disorder: A Multisample Diffusion Tensor Imaging Study

    Get PDF
    BACKGROUND: Schizophrenia (SZ) and bipolar disorder (BD) share substantial neurodevelopmental components affecting brain maturation and architecture. This necessitates a dynamic lifespan perspective in which brain aberrations are inferred from deviations from expected lifespan trajectories. We applied machine learning to diffusion tensor imaging (DTI) indices of white matter structure and organization to estimate and compare brain age between patients with SZ, patients with BD, and healthy control (HC) subjects across 10 cohorts. METHODS: We trained 6 cross-validated models using different combinations of DTI data from 927 HC subjects (18-94 years of age) and applied the models to the test sets including 648 patients with SZ (18-66 years of age), 185 patients with BD (18-64 years of age), and 990 HC subjects (17-68 years of age), estimating the brain age for each participant. Group differences were assessed using linear models, accounting for age, sex, and scanner. A meta-analytic framework was applied to assess the heterogeneity and generalizability of the results. RESULTS: Tenfold cross-validation revealed high accuracy for all models. Compared with HC subjects, the model including all feature sets significantly overestimated the age of patients with SZ (Cohen's d = -0.29) and patients with BD (Cohen's d = 0.18), with similar effects for the other models. The meta-analysis converged on the same findings. Fractional anisotropy-based models showed larger group differences than the models based on other DTI-derived metrics. CONCLUSIONS: Brain age prediction based on DTI provides informative and robust proxies for brain white matter integrity. Our results further suggest that white matter aberrations in SZ and BD primarily consist of anatomically distributed deviations from expected lifespan trajectories that generalize across cohorts and scanners
    corecore